

Table of Contents: Overview
About This Book Sample 4...
Book License 10...
What You Need 11...
Chapter 22: The Heap Data Structure 12......................
Chapter 32: Heap Sort 30..
Where to Go From Here? 36...

Data Structures & Algorithms in Swift

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4.
Book License 10.
What You Need 11.
Chapter 22: The Heap Data Structure 12.

What is a heap? 13.
The heap property 13.
Heap applications 14.
Common heap operations 15.
How do you represent a heap? 15.
Removing from a heap 18.
Inserting into a heap 21.
Removing from an arbitrary index 24.
Searching for an element in a heap 26.
Building a heap 27.
Testing 28.
Key points 28.

Chapter 32: Heap Sort 30.
Getting started 31.
Example 31.
Implementation 34.
Performance 35.
Key Points 35.

Where to Go From Here? 36.

Data Structures & Algorithms in Swift

raywenderlich.com 3

AAbout This Book Sample

Data structures are a well-studied discipline, and the concepts are language agnostic; A
data structure from C is functionally and conceptually identical to the same data
structure in any other language, such as Swift. At the same time, the high-level
expressiveness of Swift makes it an ideal choice for learning these core concepts
without sacrificing too much performance.

Data Structures & Algorithms in Swift is both a reference and an exercise book. It covers
five main topics: the Swift Standard Library, elementary data structures, trees, sorting,
and graphs.

In each topic, the book describes a number of examples of each, explaining how you can
build each in turn and examines the best approach when using them in your own code.
Understanding this will give you a much better idea of how to tackle various
algorithmic problems and help you to build apps in the most efficient way.

This book sample contains Chapters 22 and 32. Chapter 22 explains the Heap data
stucture, how to represent one in Swift and how to insert into, delete from and search
for elements within the heap. Chapter 32 goes on to explain how to implement a Heap
Sort.

We hope that this hands-on look inside the book will give you a good idea of what's
available in the full version and shows you why you should look at how the choice of
algorithms in your code can potentially improve your app's performance and scalability.

raywenderlich.com 4

The full book is available for purchase at:

• https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

Enjoy!

– Kelvin, Vincent, `Ray`, Steven, Chris and Manda

The Data Structures & Algorithms in Swift team

Data Structures & Algorithms in Swift About This Book Sample

raywenderlich.com 5

Data Structures & Algorithms in Swift
Kelvin Lau & Vincent Ngo

Copyright ©2018 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Data Structures & Algorithms in Swift About This Book Sample

raywenderlich.com 6

About the Authors
Kelvin Lau is an author of this book. Kelvin is a physicist turned
Swift iOS Developer. While he’s currently entrenched with iOS
development, he often reminisces of his aspirations to be part of the
efforts in space exploration. Outside of programming work, he’s an
aspiring entrepreneur and musician. You can find him on Twitter:
@kelvinlauKL

Vincent Ngo is an author of this book. A software developer by day,
and an iOS-Swift enthusiast by night, he believes that sharing
knowledge is the best way to learn and grow as a developer. Vincent
starts every morning with a homemade green smoothie in hand to
fuel his day. When he is not in front of a computer, Vincent is training
to play in small golf tournaments, doing headstands at various
locations while on a hiking adventure, or looking up how to make
tamago egg. You can find him on Twitter: @vincentngo2.

About the Editors
Steven Van Impe is the technical editor of this book. Steven is a
computer science lecturer at the University College of Ghent,
Belgium. When he’s not teaching, Steven can be found on his bike,
rattling over cobblestones and sweating up hills, or relaxing around
the table, enjoying board games with friends. You can find Steven on
Twitter as @svanimpe.

Chris Belanger is an editor of this book. Chris is the Editor in Chief
at raywenderlich.com. He was a developer for nearly 20 years in
various fields from e-health to aerial surveillance to industrial
controls. If there are words to wrangle or a paragraph to ponder, he’s
on the case. When he kicks back, you can usually find Chris with
guitar in hand, looking for the nearest beach. Twitter: @crispytwit.

Manda Frederick is an editor of this book. Manda has been involved
in publishing for over ten years through various creative, educational,
medical and technical print and digital publications. In her free time,
you can find her at the climbing gym, backpacking in the backcountry,
hanging with her dog, working on poems, playing guitar and
exploring breweries. Twitter: @mandarazeware.

Data Structures & Algorithms in Swift About This Book Sample

raywenderlich.com 7

Ray Fix is the final pass editor of this book. A passionate Swift
educator, enthusiast and advocate, he is actively using Swift to create
Revolve: a next generation iPad controlled research microscope at
Discover Echo Inc. Ray is mostly-fluent in spoken and written
Japanese and stays healthy by walking, jogging, and playing ultimate
Frisbee. When he is not doing one of those things, he is writing and
dreaming of code in Swift. You can find him on Twitter: @rayfix.

About the Contributors
We’d also like to acknowledge the efforts of the following contributors to the Swift
Algorithm Club GitHub repo (https://github.com/raywenderlich/swift-algorithm-club),
upon whose work portions of this book are based.

Matthijs Hollemans, the original creator of the Swift Algorithm
Club. Matthijs contributed many of the implementations and
corresponding explanations for the various data structures and
algorithms in the Swift Algorithm Club that were used in this book, in
particular: Graph, Heap, AVL Tree, BST, Breadth First Search, Depth
First Search, Linked List, Stack & Queue, Tree, Selection Sort, Bubble
Sort, Insertion Sort, Quick Sort, Merge Sort, and Heap Sort. Matthijs
spends much of his time now in machine learning. Learn more at
http://machinethink.net.

We’d also like to thank the following for their contributions to the repo:

• Donald Pinckney, Graph https://github.com/donald-pinckney
• Christian Encarnacion, Trie and Radix Sort https://github.com/Thukor
• Kevin Randrup, Heap https://github.com/kevinrandrup
• Paulo Tanaka, Depth First Search https://github.com/paulot
• Nicolas Ameghino, BST https://github.com/nameghino
• Mike Taghavi, AVL Tree
• Chris Pilcher, Breadth First Search

Data Structures & Algorithms in Swift About This Book Sample

raywenderlich.com 8

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this book.
She is Ray’s wife and business partner. She is a digital artist who
creates illustrations, game art and a lot of other art or design work for
the tutorials and books on raywenderlich.com. When she’s not
making art, she loves hiking, a good glass of wine and attempting to
create the perfect cheese plate.

Data Structures & Algorithms in Swift About This Book Sample

raywenderlich.com 9

LBook License

By purchasing Data Structures & Algorithms in Swift, you have the following license:

• You are allowed to use and/or modify the source code in Data Structures & Algorithms
in Swift in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included in
Data Structures & Algorithms in Swift in as many apps as you want, but must include
this attribution line somewhere inside your app: “Artwork/images/designs: from
Data Structures & Algorithms in Swift, available at www.raywenderlich.com”.

• The source code included in Data Structures & Algorithms in Swift is for your personal
use only. You are NOT allowed to distribute or sell the source code in Data Structures
& Algorithms in Swift without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

raywenderlich.com 10

WWhat You Need

To follow along with this book, you’ll need the following:

• A Mac running the latest macOS. This is so you can install the latest version of the
required development tool: Xcode.

• Xcode 10 or later. Xcode is the main development tool for writing code in Swift. You
need Xcode 10 at a minimum, since that version includes Swift 4.2. You can
download the latest version of Xcode for free from the Mac App Store, here: apple.co/
1FLn51R.

If you haven’t installed the latest version of Xcode, be sure to do that before continuing
with the book. The code covered in this book depends on Swift 4.2 and Xcode 10 — you
may get lost if you try to work with an older version.

raywenderlich.com 11

22Chapter 22: The Heap Data
Structure
By Vincent Ngo

Have you ever been to the arcade and played those crane machines that contain stuffed
animals or cool prizes? These machines make it very hard to win. But the fact that you
set your eyes on the item you want is the very essence of the heap data structure!

Ever seen the movie Toy Story with the claw and the little green squeaky aliens? Just
imagine that the claw machine operates on your heap data structure and will always
pick the element with the highest priority. The Claw...

In this chapter, you will focus on creating a heap, and you’ll see how convenient it is to
fetch the minimum and maximum element of a collection.

raywenderlich.com 12

What is a heap?
A heap is a complete binary tree, also known as a binary heap, that can be constructed
using an array.

Note: Don’t confuse these heaps with memory heaps. The term heap is sometimes
confusingly used in computer science to refer to a pool of memory. Memory heaps
are a different concept and not what you are studying here.

Heaps come in two flavors:

1. Max heap, in which elements with a higher value have a higher priority.

2. Min heap, in which elements with a lower value have a higher priority.

The heap property
A heap has important characteristic that must always be satisfied. This is known as the
heap invariant or heap property.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 13

In a max heap, parent nodes must always contain a value that is greater than or equal to
the value in its children. The root node will always contain the highest value.

In a min heap, parent nodes must always contain a value that is less than or equal to
the value in its children. The root node will always contain the lowest value.

Another important property of a heap is that it is a complete binary tree. This means
that every level must be filled, except for the last level. It’s like a video game wherein
you can’t go to the next level until you have completed the current one.

Heap applications
Some useful applications of a heap include:

• Calculating the minimum or maximum element of a collection.

• Heap sort.

• Constructing a priority queue.

• Constructing graph algorithms, like Prim’s or Dijkstra’s, with a priority queue.

Note: You will learn about the heap sort in Chapter 32 - provided with this
sample. Priority queues, Dijkstra’s algorithm and Prim’s algorithm are covered in
Chapters 24, 42 and 44, respectively of the full version of this book.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 14

Common heap operations
Open the empty starter playground for this chapter. Start by defining the following
basic Heap type:

struct Heap<Element: Equatable> {

 var elements: [Element] = []
 let sort: (Element, Element) -> Bool

 init(sort: @escaping (Element, Element) -> Bool) {
 self.sort = sort
 }
}

This type contains an array to hold the elements in the heap and a sort function that
defines how the heap should be ordered. By passing an appropriate function in the
initializer, this type can be used to create both min and max heaps.

How do you represent a heap?
Trees hold nodes that store references to their children. In the case of a binary tree,
these are references to a left and right child. Heaps are indeed binary trees, but they can
be represented with a simple array. This seems like an unusual way to build a tree. But
one of the benefits of this heap implementation is efficient time and space complexity, as
the elements in the heap are all stored together in memory. You will see later on that
swapping elements will play a big part in heap operations. This is also easier to do with
an array than with a binary tree data structure. Let’s take a look at how heaps can be
represented using an array. Take the following binary heap:

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 15

To represent the heap above as an array, you would simply iterate through each
element level-by-level from left to right.

Your traversal would look something like this:

As you go up a level, you’ll have twice as many nodes than in the level before.

It’s now easy to access any node in the heap. You can compare this to how you’d access
elements in an array: Instead of traversing down the left or right branch, you can
simply access the node in your array using simple formulas.

Given a node at a zero-based index i:

• The left child of this node can be found at index 2i + 1.

• The right child of this node can be found at index 2i + 2.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 16

You might want to obtain the parent of a node. You can solve for i in this case. Given a
child node at index i, this child’s parent node can be found at index floor((i - 1) /
2).

Complexity: Traversing down an actual binary tree to get the left and right child
of a node is a O(log n) operation. In a random-access data structure, such as an
array, that same operation is just O(1).

Note: Complexity is covered in Chapter 3 of the full book.

Next, use your new knowledge to add some properties and convenience methods to
Heap:

var isEmpty: Bool {
 return elements.isEmpty
}

var count: Int {
 return elements.count
}

func peek() -> Element? {
 return elements.first
}

func leftChildIndex(ofParentAt index: Int) -> Int {
 return (2 * index) + 1
}

func rightChildIndex(ofParentAt index: Int) -> Int {
 return (2 * index) + 2
}

func parentIndex(ofChildAt index: Int) -> Int {
 return (index - 1) / 2
}

Now that you have a good understanding of how you can represent a heap using an
array, you’ll look at some important operations of a heap.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 17

Removing from a heap
A basic remove operation simply removes the root node from the heap.

Take the following max heap:

A remove operation will remove the maximum value at the root node. To do so, you
must first swap the root node with the last element in the heap.

Once you’ve swapped the two elements, you can remove the last element and store its
value so you can later return it.

Now, you must check the max heap’s integrity. But first, ask yourself, “Is it still a max
heap?”

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 18

Remember: The rule for a max heap is that the value of every parent node must be
larger than, or equal to, the values of its children. Since the heap no longer follows this
rule, you must perform a sift down.

To perform a sift down, you start from the current value 3 and check its left and right
child. If one of the children has a value that is greater than the current value, you swap
it with the parent. If both children have a greater value, you swap the parent with the
child having the greater value.

Now, you have to continue to sift down until the node’s value is not larger than the
values of its children.

Once you reach the end, you’re done, and the max heap’s property has been restored!

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 19

Implementation of remove
Add the following method to Heap:

mutating func remove() -> Element? {
 guard !isEmpty else { // 1
 return nil
 }
 elements.swapAt(0, count - 1) // 2
 defer {
 siftDown(from: 0) // 4
 }
 return elements.removeLast() // 3
}

Here’s how this method works:

1. Check to see if the heap is empty. If it is, return nil.

2. Swap the root with the last element in the heap.

3. Remove the last element (the maximum or minimum value) and return it.

4. The heap may not be a max or min heap anymore, so you must perform a sift down
to make sure it conforms to the rules.

Now, to see how to sift down nodes, add the following method after remove():

mutating func siftDown(from index: Int) {
 var parent = index // 1
 while true { // 2
 let left = leftChildIndex(ofParentAt: parent) // 3
 let right = rightChildIndex(ofParentAt: parent)
 var candidate = parent // 4
 if left < count && sort(elements[left], elements[candidate]) {
 candidate = left // 5
 }
 if right < count && sort(elements[right], elements[candidate]) {
 candidate = right // 6
 }
 if candidate == parent {
 return // 7
 }
 elements.swapAt(parent, candidate) // 8
 parent = candidate
 }
}

siftDown(from:) accepts an arbitrary index. This will always be treated as the parent
node. Here’s how the method works:

1. Store the parent index.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 20

2. Continue sifting until you return.

3. Get the parent’s left and right child index.

4. The candidate variable is used to keep track of which index to swap with the parent.

5. If there is a left child, and it has a higher priority than its parent, make it the
candidate.

6. If there is a right child, and it has an even greater priority, it will become the
candidate instead.

7. If candidate is still parent, you have reached the end, and no more sifting is
required.

8. Swap candidate with parent and set it as the new parent to continue sifting.

Complexity: The overall complexity of remove() is O(log n). Swapping elements in
an array takes only O(1), while sifting down elements in a heap takes O(log n)
time.

Now that you know how to remove from the top of the heap, how do you add to a heap?

Inserting into a heap
Let’s say you insert a value of 7 to the heap below:

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 21

First, you add the value to the end of the heap:

Now, you must check the max heap’s property. Instead of sifting down, you must now
sift up since the node that you just inserted might have a higher priority than its
parents. This sifting up works much like sifting down, by comparing the current node
with its parent and swapping them if needed.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 22

Your heap has now satisfied the max heap property!

Implementation of insert
Add the following method to Heap:

mutating func insert(_ element: Element) {
 elements.append(element)
 siftUp(from: elements.count - 1)
}

mutating func siftUp(from index: Int) {
 var child = index
 var parent = parentIndex(ofChildAt: child)
 while child > 0 && sort(elements[child], elements[parent]) {
 elements.swapAt(child, parent)
 child = parent
 parent = parentIndex(ofChildAt: child)
 }
}

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 23

As you can see, the implementation is pretty straightforward:

• insert appends the element to the array and then performs a sift up.

• siftUp swaps the current node with its parent, as long as that node has a higher
priority than its parent.

Complexity: The overall compexity of insert(_:) is O(log n). Appending an
element in an array takes only O(1), while sifting up elements in a heap takes
O(log n).

That’s all there is to inserting an element in a heap.

You have so far looked at removing the root element from a heap and inserting into a
heap. But what if you wanted to remove any arbitrary element from the heap?

Removing from an arbitrary index
Add the following to Heap:

mutating func remove(at index: Int) -> Element? {
 guard index < elements.count else {
 return nil // 1
 }
 if index == elements.count - 1 {
 return elements.removeLast() // 2
 } else {
 elements.swapAt(index, elements.count - 1) // 3
 defer {
 siftDown(from: index) // 5
 siftUp(from: index)
 }
 return elements.removeLast() // 4
 }
}

To remove any element from the heap, you need an index. Let’s go over how this works:

1. Check to see if the index is within the bounds of the array. If not, return nil.

2. If you’re removing the last element in the heap, you don’t need to do anything
special. Simply remove and return the element.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 24

3. If you’re not removing the last element, first swap the element with the last
element.

4. Then, return and remove the last element.

5. Finally, perform a sift down and a sift up to adjust the heap.

But — why do you have to perform both a sift down and a sift up?

Shifting up case

Assume that you are trying to remove 5. You swap 5 with the last element, which is 8.
You now need to perform a sift up to satisfy the max heap property.

Shifting down case

Now, assume you are trying to remove 7. You swap 7 with the last element, 1. You now
need to perform a sift down to satisfy the max heap property.

Removing an arbitrary element from a heap is an O(log n) operation. But how do you
actually find the index of the element you wish to delete?

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 25

Searching for an element in a heap
To find the index of the element that you wish to delete, you must perform a search on
the heap. Unfortunately, heaps are not designed for fast searches. With a binary search
tree, you can perform a search in O(log n) time, but since heaps are built using an array,
and the node ordering in an array is different, you can’t even perform a binary search.

Complexity: To search for an element in a heap is, in the worst-case, an O(n)
operation, since you may have to check every element in the array:

func index(of element: Element, startingAt i: Int) -> Int? {
 if i >= count {
 return nil // 1
 }
 if sort(element, elements[i]) {
 return nil // 2
 }
 if element == elements[i] {
 return i // 3
 }
 if let j = index(of: element, startingAt: leftChildIndex(ofParentAt:
i)) {
 return j // 4
 }
 if let j = index(of: element, startingAt: rightChildIndex(ofParentAt:
i)) {
 return j // 5
 }
 return nil // 6
}

Let’s go over this implementation:

1. If the index is greater than or equal to the number of elements in the array, the
search failed. Return nil.

2. Check to see if the element that you are looking for has higher priority than the
current element at index i. If it does, the element you are looking for cannot
possibly be lower in the heap.

3. If the element is equal to the element at index i, return i.

4. Recursively search for the element starting from the left child of i.

5. Recursively search for the element starting from the right child of i.

6. If both searches failed, the search failed. Return nil.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 26

Note: Although searching takes O(n) time, you have made an effort to optimize
searching by taking advantage of the heap’s property and checking the priority of
the element when searching.

Building a heap
You now have all the necessary tools to represent a heap. To wrap up this chapter, you’ll
build a heap from an existing array of elements and test it out. Update the initializer of
Heap as follows:

init(sort: @escaping (Element, Element) -> Bool,
 elements: [Element] = []) {
 self.sort = sort
 self.elements = elements

 if !elements.isEmpty {
 for i in stride(from: elements.count / 2 - 1, through: 0, by: -1) {
 siftDown(from: i)
 }
 }
}

The initializer now takes an additional parameter. If a non-empty array is provided, you
use this as the elements for the heap. To satisfy the heap’s property, you loop through
the array backwards, starting from the first non-leaf node, and sift down all parent
nodes. You loop through only half of the elements, because there is no point in sifting
down leaf nodes, only parent nodes.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 27

Testing
Time to try it out. Add the following to your playground:

var heap = Heap(sort: >, elements: [1,12,3,4,1,6,8,7])

while !heap.isEmpty {
 print(heap.remove()!)
}

This creates a max heap (because > is used as the sorting function) and removes
elements one-by-one until it is empty. Notice that the elements are removed largest to
smallest and the following numbers are printed to the console.

12
8
7
6
4
3
1
1

Key points
• Here is a summary of the algorithmic complexity of the heap operations that you

implemented in this chapter:

Heap operation time complexity

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 28

• The heap data structure is good for maintaining the highest- or lowest-priority
element.

• Every time you insert or remove items from the heap, you must check to see if it
satisfies the rules of the priority.

Data Structures & Algorithms in Swift Chapter 22: The Heap Data Structure

raywenderlich.com 29

32Chapter 32: Heap Sort
Vincent Ngo

Heapsort is another comparison-based algorithm that sorts an array in ascending order
using a heap. This chapter builds on the heap concepts presented in Chapter 22, "The
Heap Data Structure."

Heapsort takes advantage of a heap being, by definition, a partially sorted binary tree
with the following qualities:

1. In a max heap, all parent nodes are larger than their children.

2. In a min heap, all parent nodes are smaller than their children.

The diagram below shows a heap with parent node values underlined:

raywenderlich.com 30

Getting started
Open up the starter playground. This playground already contains an implementation
of a max heap. Your goal is to extend Heap so it can also sort. Before you get started,
let’s look at a visual example of how heap sort works.

Example
For any given unsorted array, to sort from lowest to highest, heap sort must first
convert this array into a max heap:

This conversion is done by sifting down all the parent nodes so that they end up in the
right spot. The resulting max heap is:

Data Structures & Algorithms in Swift Chapter 32: Heap Sort

raywenderlich.com 31

This corresponds with the following array:

Because the time complexity of a single sift-down operation is O(log n), the total time
complexity of building a heap is O(n log n).

Let’s look at how to sort this array in ascending order.

Because the largest element in a max heap is always at the root, you start by swapping
the first element at index 0 with the last element at index n - 1. As a result of this swap,
the last element of the array is in the correct spot, but the heap is now invalidated. The
next step is, thus, to sift down the new root note 5 until it lands in its correct position.

Note that you exclude the last element of the heap as you no longer consider it part of
the heap, but of the sorted array.

As a result of sifting down 5, the second largest element 21 becomes the new root. You
can now repeat the previous steps, swapping 21 with the last element 6, shrinking the
heap and sifting down 6.

Starting to see a pattern? Heap sort is very straightforward. As you swap the first and
last elements, the larger elements make their way to the back of the array in the correct

Data Structures & Algorithms in Swift Chapter 32: Heap Sort

raywenderlich.com 32

order. You simply repeat the swapping and sifting steps until you reach a heap of size 1.
The array is then fully sorted.

Note: This sorting process is very similar to selection sort from Chapter 26, which
is available in the full version of this book.

Data Structures & Algorithms in Swift Chapter 32: Heap Sort

raywenderlich.com 33

Implementation
Next, you’ll implement this sorting algorithm. The actual implementation is very
simple, as the heavy lifting is already done by the siftDown method:

extension Heap {
 func sorted() -> [Element] {
 var heap = Heap(sort: sort, elements: elements) // 1
 for index in heap.elements.indices.reversed() { // 2
 heap.elements.swapAt(0, index) // 3
 heap.siftDown(from: 0, upTo: index) // 4
 }
 return heap.elements
 }
}

Here’s what’s going on:

1. You first make a copy of the heap. After heap sort sorts the elements array, it is no
longer a valid heap. By working on a copy of the heap, you ensure the heap remains
valid.

2. You loop through the array, starting from the last element.

3. You swap the first element and the last element. This moves the largest unsorted
element to its correct spot.

4. Because the heap is now invalid, you must sift down the new root node. As a result,
the next largest element will become the new root.

Note that, in order to support heap sort, you’ve added an additional parameter upTo to
the siftDown method. This way, the sift down only uses the unsorted part of the array,
which shrinks with every iteration of the loop.

Finally, give your new method a try:

let heap = Heap(sort: >, elements: [6, 12, 2, 26, 8, 18, 21, 9, 5])
print(heap.sorted())

This should print:

[2, 5, 6, 8, 9, 12, 18, 21, 26]

Data Structures & Algorithms in Swift Chapter 32: Heap Sort

raywenderlich.com 34

Performance
Even though you get the benefit of in-memory sorting, the performance of heap sort is
O(n log n) for its best, worse and average cases. This is because you have to traverse the
whole list once and, every time you swap elements, you must perform a sift down,
which is an O(log n) operation.

Heap sort is also not a stable sort because it depends on how the elements are laid out
and put into the heap. If you were heap sorting a deck of cards by their rank, for
example, you might see their suite change order with respect to the original deck.

Key Points
• Heap sort leverages the max-heap data structure to sort elements in an array.

Data Structures & Algorithms in Swift Chapter 32: Heap Sort

raywenderlich.com 35

WWhere to Go From Here?

We hope you enjoyed this sample of Data Structures & Algorithms in Swift!

If you did, be sure to check out the full book, which contains the following chapters:

1. Preface: Data structures are a well-studied area, and the concepts are language
agnostic; a data structure from C is functionally and conceptually identical to the
same data structure in any other language, such as Swift. At the same time, the
high-level expressiveness of Swift make it an ideal choice for learning these core
concepts without sacrificing too much performance.

2. Swift Standard Library: Before you dive into the rest of this book, you’ll first look
at a few data structures that are baked into the Swift language. The Swift standard
library refers to the framework that defines the core components of the Swift
language. Inside, you’ll find a variety of tools and types to help build your Swift
apps.

3. Linked List: A linked list is a collection of values arranged in a linear unidirectional
sequence. A linked list has several theoretical advantages over contiguous storage
options such as the Swift Array, including constant time insertion and removal from
the front of the list, and other reliable performance characteristics.

4. Stack Data Structure: The stack data structure is identical in concept to a physical
stack of objects. When you add an item to a stack, you place it on top of the stack.
When you remove an item from a stack, you always remove the topmost item.
Stacks are useful, and also exceedingly simple. The main goal of building a stack is
to enforce how you access your data.

raywenderlich.com 36

5. Queues: Lines are everywhere, whether you are lining up to buy tickets to your
favorite movie, or waiting for a printer machine to print out your documents. These
real-life scenarios mimic the queue data structure. Queues use first-in-first-out
ordering, meaning the first element that was enqueued will be the first to get
dequeued. Queues are handy when you need to maintain the order of your elements
to process later.

6. Trees: The tree is a data structure of profound importance. It is used to tackle many
recurring challenges in software development, such as representing hierarchical
relationships, managing sorted data, and facilitating fast lookup operations. There
are many types of trees, and they come in various shapes and sizes.

7. Binary Trees: In the previous chapter, you looked at a basic tree where each node
can have many children. A binary tree is a tree where each node has at most two
children, often referred to as the left and right children. Binary trees serve as the
basis for many tree structures and algorithms. In this chapter, you’ll build a binary
tree and learn about the three most important tree traversal algorithms.

8. Binary Search Trees: A binary search tree facilitates fast lookup, addition, and
removal operations. Each operation has an average time complexity of O(log n),
which is considerably faster than linear data structures such as arrays and linked
lists.

9. AVL Trees: In the previous chapter, you learned about the O(log n) performance
characteristics of the binary search tree. However, you also learned that unbalanced
trees can deteriorate the performance of the tree, all the way down to O(n). In 1962,
Georgy Adelson-Velsky and Evgenii Landis came up with the first self-balancing
binary search tree: the AVL Tree.

10. Tries: The trie (pronounced as “try”) is a tree that specializes in storing data that
can be represented as a collection, such as English words. The benefits of a trie are
best illustrated by looking at it in the context of prefix matching, which is what
you’ll do in this chapter.

11. Binary Search: Binary search is one of the most efficient searching algorithms with
a time complexity of O(log n). This is comparable with searching for an element
inside a balanced binary search tree. To perform a binary search, the collection must
be able to perform index manipulation in constant time, and must be sorted.

Data Structures & Algorithms in Swift Where to Go From Here?

raywenderlich.com 37

12. The Heap Data Structure: A heap is a complete binary tree, also known as a binary
heap, that can be constructed using an array. Heaps come in two flavors: Max heaps
and Min heaps. Have you seen the movie Toy Story, with the claw machine and the
squeaky little green aliens? Imagine that the claw machine is operating on your
heap structure, and will always pick the minimum or maximum value, depending on
the flavor of heap.

13. Priority Queue: Queues are simply lists that maintain the order of elements using
first-in-first-out (FIFO) ordering. A priority queue is another version of a queue
that, instead of using FIFO ordering, dequeues elements in priority order. A priority
queue is especially useful when you need to identify the maximum or minimum
value given a list of elements.

14. O(n²) Sorting Algorithms: O(n²) time complexity is not great performance, but
the sorting algorithms in this category are easy to understand and useful in some
scenarios. These algorithms are space efficient; they only require constant O(1)
additional memory space. In this chapter, you'll be looking at the bubble sort,
selection sort, and insertion sort algorithms.

15. Merge Sort: Merge sort is one of the most efficient sorting algorithms. With a time
complexity of O(log n), it’s one of the fastest of all general-purpose sorting
algorithms. The idea behind merge sort is divide and conquer: to break up a big
problem into several smaller, easier to solve problems and then combine those
solutions into a final result. The merge sort mantra is to split first, and merge after.

16. Radix Sort: In this chapter, you’ll look at a completely different model of sorting.
So far, you’ve been relying on comparisons to determine the sorting order. Radix
sort is a non-comparative algorithm for sorting integers in linear time. There are
multiple implementations of radix sort that focus on different problems. To keep
things simple, in this chapter you’ll focus on sorting base 10 integers while
investigating the least significant digit (LSD) variant of radix sort.

17. Heap Sort: Heapsort is another comparison-based algorithm that sorts an array in
ascending order using a heap. This chapter builds on the heap concepts presented
in Chapter 12, “The Heap Data Structure”. Heapsort takes advantage of a heap
being, by definition, a partially sorted binary tree.

Data Structures & Algorithms in Swift Where to Go From Here?

raywenderlich.com 38

18. Quicksort: In the preceding chapters, you’ve learned to sort an array using
comparison-based sorting algorithms, merge sort, and heap sort. Quicksort is
another comparison-based sorting algorithm. Much like merge sort, it uses the
same strategy of divide and conquer. In this chapter, you will implement Quicksort
and look at various partitioning strategies to get the most out of this sorting
algorithm.

19. Graphs: What do social networks have in common with booking cheap flights
around the world? You can represent both of these real-world models as graphs! A
graph is a data structure that captures relationships between objects. It is made up
of vertices connected by edges. In a weighted graph, every edge has a weight
associated with it that represents the cost of using this edge. This lets you choose
the cheapest or shortest path between two vertices.

20. Breadth-First Search: In the previous chapter, you explored how graphs can be
used to capture relationships between objects. Several algorithms exist to traverse
or search through a graph's vertices. One such algorithm is the breadth-first search
algorithm, which can be used to solve a wide variety of problems, including
generating a minimum spanning tree, finding potential paths between vertices, and
finding the shortest path between two vertices.

21. Depth-First Search: In the previous chapter, you looked at breadth-first search
where you had to explore every neighbor of a vertex before going to the next level.
In this chapter, you will look at depth-first search, which has applications for
topological sorting, detecting cycles, path finding in maze puzzles, and finding
connected components in a sparse graph.

22. Dijkstra’s Algorithm: Have you ever used the Google or Apple Maps app to find
the shortest or fastest from one place to another? Dijkstra’s algorithm is
particularly useful in GPS networks to help find the shortest path between two
places. Dijkstra’s algorithm is a greedy algorithm, which constructs a solution step-
by-step, and picks the most optimal path at every step.

23. Prim’s Algorithm: In previous chapters, you’ve looked at depth-first and breadth-
first search algorithms. These algorithms form spanning trees. In this chapter, you
will look at Prim’s algorithm, a greedy algorithm used to construct a minimum
spanning tree. A minimum spanning tree is a spanning tree with weighted edges
where the total weight of all edges is minimized. You’ll learn how to implement a
greedy algorithm to construct a solution step-by-step, and pick the most optimal
path at every step.

Data Structures & Algorithms in Swift Where to Go From Here?

raywenderlich.com 39

Challenges: In addition to all the above theory chapters, you’ll also get challenge
chapters to test your knowledge of the data structures and algorithms contained in the
book, along with a full set of solutions with code.

You can find the book on the raywenderlich.com store here:

• https://store.raywenderlich.com/products/data-structures-and-algorithms-in-swift

We hope you enjoy the book! :]

– Kelvin, Vincent, `Ray`, Steven, Chris and Manda

The Data Structures & Algorithms in Swift team

Data Structures & Algorithms in Swift Where to Go From Here?

raywenderlich.com 40

