Apprentice

SECOND EDITION
Beginning Android Development with Kotlin

By the raywenderlich.com Tutorial Team
Namrata Bandekar, Darryl Bayliss, Tom Blankenship & Fuad Kamal

Android Apprentice

Table of Contents: Overview

About This Book Sampleccoevvviiiiiiiiein, 5
Book LicenSe........ovvniinii 9
Section I: Your First Android App ...covvvvvvieniiieiineianeen, 10
Chapter 1: Setting Up Android Studio................. 11
Chapter 2: Layoutscccoeevviiiiiiiiiiiiieeieeieen, 37
Chapter 3: ACtiVItiesovvviiiiiieeee, 52
Chapter 4: Debuggingccocvveeivieiieiieciennn.., 69
Chapter 5: Prettifying the Appcoovvvvviiniinnnnn. /79
Whereto Go From Here?coovevvieiiiiiiiiiiieieenn, 96

h raywenderlich.com 2

Android Apprentice

Table of Contents: Extended

About ThisBook Sample............ 5
Book License......... 9
Section I: Your First Android App 10
Chapter 1: Setting Up Android Studio 11
Gettingstarted i e 11
Your first Android project 14
Android Studio. e e 18
Creating an Android virtual device 20
Settingup an Android device 26
Runningthe app 30
Installing new versions of Android studio. 33
Wheretogofromhere? i 36
Chapter2:Layouts........... 37
Gettingstarted e 38
These are not the SDKs you're looking for. 38
The Visual editor e 39
Component tree VIEW. . . . oo vt e e 41
Positioning your VIEWS.t e 43
Adding rulestoyourposition i 44
Finishingthescreen 47
Wheretogofromhere? i 50
Chapter 3: Activities. ..., 52
Gettingstarted e 52
Exploring ACtivitiesot e 57
Hookingup Views i i 59
Managing stringS in your appottt e e e 62
Progressingthegame. i, 63
Startingthegame e e 65

h raywenderlich.com 3

Android Apprentice

Endingthe game i 67
Wheretogofromhere? i i e 68
Chapter4: Debugging. ..., 69
Getting started i e 69
Add sOome [0gging . . .ot e e 70
Orientationchanges it 72
Breakpoints i e 74
Restartingthegame i 76
Wheretogo fromhere? i 78
Chapter 5: Prettifyingthe App 79
Getting started i e 80
Changingtheappbarcolor............. 81
ANiMations. 83
AddingaDialog e 87
Wheretogofromhere? 95
Whereto GoFromHere? 06

h raywenderlich.com 4

: A his Book Sample
l AR

The book Android Apprentice is your introduction to building great apps in Android,
using the Kotlin language. Whether you still consider yourself a novice programmer, or
have extensive experience programming for iOS or other platforms, this is the book for
you!

The book shows you how to build four complete apps from scratch — each app is a little
more complicated than the previous one. Together, these apps will teach you how to
work with the most common controls and APIs used by Android developers around the
world.

It also includes some bonus sections on handling the Android fragmentation problem,
how to keep your app up-to-date, preparing your app for release, testing your app, and
publishing it for the world to enjoy!

This book sample contains the first five chapters of the full book. With this sample
you'll learn how to build your first Android app using Kotlin, the hot new programming
language for Android development. Everybody likes games, right? So, this first app is a
simple but fun Android game named Timefighter which will teach you the basics of
Android programming.

We hope that this hands-on look inside the book will give you a flavor of what's
available in the full version and that it encourages you to write your own Android apps
and release them on the Google Play Store!

The full book is available for purchase at:

» https://store.raywenderlich.com/products/android-apprentice

Enjoy!

— Darryl, Tom, Namrata, Fuad and the Android Apprentice team

K

Android Apprentice, Second Edition
Darryl Bayliss, Tom Blankenship, Fuad Kamal & Namrata Bandekar

Copyright ©2019 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an “as
is” basis, without warranty of any kind, express of implied, including but not limited to
the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in the
software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

About the Authors

——

{

Darryl Bayliss is an author of this book. Darryl is a Software Engineer
from Liverpool, focusing on Mobile Development. Away from
programming he is usually reading or playing some fantastical video
game involving magic and dragons. You can say hello on Twitter over
at @dazindustries

Tom Blankenship is an author on this book. Tom has been addicted
to coding since he was a young teenager, writing his first programs on
Atari home computers. He currently runs his own software
development company focused on native iOS and Android app
development. He enjoys playing tennis, guitar, and drums, and
spending time with his wife and two children.

Fuad Kamal is an author on this book. He provides mobile strategy,
architecture and development for the Health & Fitness markets. If
you’ve ever been to an airport, you’ve likely seen his work — the
flight arrival and departure screens are a Flash 7 interface he wrote
towards the beginning of the millennium. He can be contacted
through anaara.com.

Namrata Bandekar is one of the authors and a tech editor of this
book. She is a Software Engineer focusing on native Android and iOS
development. When she's not developing apps, she enjoys spending
her time travelling the world with her husband, SCUBA diving and
hiking with her dog. She has also spoken at a number of international
conferences on mobile development. Say hi to Namrata on Twitter:
@NamrataCodes.

About the Editors

Kevin Moore is a technical editor for this book. He has been
developing Android apps for over 8 years and at many companies.
He’s written several articles at www.raywenderlich.com and created
the "Programming in Kotlin" video series. He enjoys creating apps for
fun and teaching others how to write Android apps. In addition to
programming, he loves playing volleyball and running the sound
system at church.

Vijay Sharma is a tech editor of this book. Vijay is a husband, a
father and a senior mobile engineer. Based out of Canada’s capital,
Vijay has worked on dozens of apps for both Android and i0S. When
not in front of his laptop, you can find him in front of a TV, behind a
book, or chasing after his kids. You can reach out to him on Twitter:

@v_sharm

Ellen Shapiro is a tech editor on this book. Ellen is an iOS developer
for Bakken & Baeck’s Amsterdam office who also occasionally writes
Android apps. She is working in her spare time to help bring
songwriting app Hum to life. She’s also developed several
independent applications through her personal company, Designated
Nerd Software. When she’s not writing code, she’s usually tweeting
about it at (@desionatednerd

Tammy Coron is an editor of this book. Tammy is an independent
creative professional and the host of Roundabout: Creative Chaos.
She’s also the co-founder of Day Of The Indie and the founder of Just
Write Code. For more information visit TammyCoron.com.

Eric Soto is the final pass editor of this book. Eric is a Professional
Software Engineer, certified Agile-Scrum Master and Mac fanatic.
Focusing on Apple iOS, Android Apps, Node]S and APIs, Eric works
with clients all across the US including many big-name brands.
During his 30+ year career, Eric has also worked with web
applications, server back-end systems, automated infrastructure
deployments and more. Follow Eric on Twitter @ericwastaken or on
his website ericsoto.net.

Yok License

By purchasing Android Apprentice, you have the following license:

You are allowed to use and/or modify the source code in Android Apprentice in as
many apps as you want, with no attribution required.

You are allowed to use and/or modify all art, images and designs that are included in
Android Apprentice in as many apps as you want, but must include this attribution
line somewhere inside your app: “Artwork/images/designs: from Android Apprentice,
available at www.raywenderlich.com”.

The source code included in Android Apprentice is for your personal use only. You are
NOT allowed to distribute or sell the source code in Android Apprentice without prior
authorization.

This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty
of any kind, express or implied, including but not limited to the warranties of
merchantability, fitness for a particular purpose and noninfringement. In no event shall
the authors or copyright holders be liable for any claim, damages or other liability,
whether in an action of contract, tort or otherwise, arising from, out of or in connection
with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of
their respective owners.

h raywenderlich.com 9

Section I;: Your First Android
App

This is your introduction to creating apps in Android. This section will take you step-
by-step through installing Android Studio and working inside the IDE and visual
designer while you build TimeFighter, a simple game that uses many common Android
components.

Chapter 1: Setting Up Android Studio
Chapter 2: Layouts

Chapter 3: Activities

Chapter 4: Debugging

Chapter 5: Prettifying the App

h raywenderlich.com 10

Chapter 1: Setting Up

Android Studio

By Darryl Bayliss

To create that killer Android App, you’ll need to install the tools that you need as a
young apprentice. Android development happens inside Android Studio, a customized
IDE, based on Intelli], that gives you a powerful set of tools to work with.

In this chapter you’ll learn:
» How to set up Android Studio on your machine.
« How to set up a physical and emulated device for development.

« How to run an app on a device.

Getting started

Open up your favorite web browser and navigate to https://developer.android.com/
studio/#downloads.

Android Studio downloads

Platform Android Studio package Size SHA-256 checksum
droid-studio-ide-181.5056338-wi _exe
927 MB 6ee509f3391757fe87cc5c1e4970a0228fc1ad6ca34a8b31c0a28926179353a9
Windows Recommended
(64-bit)

android-studio-ide-181.5056338-windows.zip 1001MB 21aebb3a7fabd931b830ec40d836d6945eabbaf32ac1h52fae148d33599fd7c

No .exe installer

Windows droid-studio-ide-181.50563 indows32.zip

30-bit 1000 MB 3a61a587¢90e358ab15d076d0306550564ad4cc5a8aaldd0c22¢c6afd092e976a
(32:bit) No .exe installer

Mac android-studio-ide-181.5056338-mac.dmg 989 MB b8d2b7add6a7c776d16a8e48bd35c3e2bba18b4717131d7b9a00fa416ebed480
Linux android-studio-ide-181.5056338-linux.zip 1007 MB b9ec0d44f2feaafe1e3fbd1ed696bf325f9e05cfb6c1ace84dbf87ae249efa84

h raywenderlich.com 11

You have a number of download options, as Android Studio can run on a variety of
Operating Systems. Click the package for the operating system your computer uses.

Note: This chapter assumes that your computer is running macOS; however, as
Android Studio supports Windows and Linux, we’ll provide instructions for those
operating systems as well.

The downloads page will pop up a terms and conditions screen.

Download Android Studio

Before downloading, you must agree to the following terms and conditions.

Terms and Conditions
This is the Android Software Development Kit License Agreement
1. Introduction

1.1 The Android Software Development Kit (referred to in the License Agreement as the "SDK" and specifically including the Android system files, packaged APIs, and Google
APIs add-ons) is licensed to you subject to the terms of the License Agreement. The License Agreement forms a legally binding contract between you and Google in relation to
your use of the SDK

1.2 "Android" means the Android software stack for devices, as made available under the Android Open Source Project, which is located at the following URL:
http://source.android.com/, as updated from time to time.

1.3 A "compatible implementation” means any Android device that (i) complies with the Android Compatibility Definition document, which can be found at the Android
compatibility website (http://source.android.com/compatibility) and which may be updated from time to time; and (i) successfully passes the Android Compatibility Test Suite

(CTS).

1.4 "Google" means Google LLC, a Delaware corporation with principal place of business at 1600 Amphitheatre Parkway, Mountain View, CA 94043, United States

2. Accepting this License Agreement
2.1 In order to use the SDK, you must first agree to the License Agreement. You may not use the SDK if you do not accept the License Agreement.
2.2 By clicking to accept, you hereby agree to the terms of the License Agreement.

2.3 You may not use the SDK and may not accept the License Agreement if you are a person barred from receiving the SDK under the laws of the United States or other

| have read and agree with the above terms and conditions

DOWNLOAD ANDROID STUDIO FOR MAC

android-studio-ide-181.5056338-mac.dmg

Check the checkbox at the bottom of the screen if you agree to the terms and then
Click the Download Android Studio button.

As your computer begins to download Android Studio, your browser will show a pop-up
window with some suggestions on what to do next.

Thank you for downloading Android Studio!

If you're new to Android development, check out the following resources to get started

(0 a o

Build your first app Learn with Udacity Explore Android Studio
Start writing code in Android Studio by following the Learn Android with interactive video training in the Introduce yourself to the Android Studio Ul and its
tutorial to Build your first app Android Fundamentals Udacity course. various tools in Meet Android Studio.

For help installing Android Studio, see the Install guide.

Click the blue install guide link at the bottom of the pop-up. The browser will open up
a new page containing setup videos for Android Studio for each operating system.

Join us on the livestream at Android Dev Summit on 7-8 November 2018, starting at 10AM PDT!

H H Contents
Mest Android St Install Android Studio I
Overview Mac
Install Android Studio Setting up Android Studio takes just a few clicks. Linux

Migrate to Android Studio
Configure the IDE
Keyboard shortcuts

First, be sure you download the latest version of Android Studio.

Accessibility features Wind
Update the IDE and tools Indows
Workflow basics

Manage your project To install Android Studio on Windows, proceed as follows:

Write your app 1. If you downloaded an .exe file (recommended), double-click to launch it.
Build and run your app
If you downloaded a .zip file, unpack the ZIP, copy the android-studio folder into your Program Files folder, and

then open the android-studio > bin folder and launch studio64.exe (for 64-bit machines) or studio.exe (for 32-
bit machines).

Configure your build
Debug your app
Test your app
Profile your app 2. Follow the setup wizard in Android Studio and install any SDK packages that it recommends.
Publish your app
ST neEs That's it. The following video shows each step of the setup procedure when using the recommended .exe download.

Troubleshoot

()
]

Known issues

Report a bug

[

Follow the instructions and/or video relevant to your operating system until the
welcome to Android Studio window is open.

Note: Unless you have an extremely fast internet connection, it will take a while
for all of the components you need to download. Depending on how your system is
set up, you may need to enter your password or an administrator's password to
allow installation to complete.

K

@ Welcome to Android Studio

>

Android Studio

Version 3.3

- Start a new Android Studio project

= Open an existing Android Studio project
[+ Check out project from Version Control ~
[#' Profile or debug APK

¥ Import project (Gradle, Eclipse ADT, etc.)

¥’ Import an Android code sample

& Configure v+ Get Help ~

Your first Android project

Now that you have Android Studio installed, it’s time to create your first project. This
chapter focuses on getting your app running as quickly as possible on a device. Along
the way, you’ll encounter a few screens that you won’t quite understand at first, but
don’t worry: you’ll get a chance to experience these screens in detail in the full book.
For this sample, just enjoy the ride!

On the welcome screen, click Start a new Android Studio project:

Start a new Android Studio project

The welcome window will disappear and a new window will take its place. This is where
you can set up a few key elements of your app.

o @® Create New Project

Choose your project

Phone and Tablet Wear 0OS TV Android Auto Android Things

_ H _ _ P
Add No Activity
Basic Activity Empty Activity Bottom Navigation Activity
e m
Fullscreen Activity Master/Detail Flow Navigation Drawer Activity Google Maps Activity

Empty Activity

Creates a new empty activity

Cancel Previous m Finish

Here’s what each field means:

1. The first and most important thing in any app is its name. In the Application
name textfield, enter Timefighter.

2. The Company domain textfield provides your app with a package name, a concept
you should be familiar with from Java or Kotlin. Here, simply enter
raywenderlich.com.

3. The Project location textfield tells Android Studio where to create the directory
containing your project.

Note: Feel free to create your project anywhere you want. The ellipsis button to
the right provides you with a system navigator to easily find the place to create
your project.

K

4. The Include Kotlin Support checkbox informs Android Studio that your project
requires the Kotlin libraries to be added so you can write your app in Kotlin. It also
ensures the starter project code is all Kotlin. Check the box if it isn’t already
checked.

5. The Next button in the bottom right of the window moves you to the target device
section.

The next window provides a variety of checkboxes and dropdowns for you to configure
which versions of Android you want to support:

On this screen:

1. Android supports a variety of devices: phones, watches, cars and even refrigerators!
If you want to configure a new app to run on these devices, this is the screen to do
it.

Timefighter will only run on a phone, and Android Studio has already checked that

option for you. As well, it has set a minimum Android version for the app in the
dropdown box.

This book requires your apps to run on API 19, or Android KitKit in English. So click
the dropdown and click API 19: Android 4.4 (KitKat).

Minimum API level

API 19: Android 4.4 (KitKat) v

@ Your app will run on approximately 95.3% of devices.
Help me choose

2. The Next button in the bottom-right of the window moves you to the project
template section.

The next window provides a variety of preset projects you can choose from to set up the
foundation of your app. Each choice provides your starter project with different code
and resources generated by Android Studio.

The Empty Activity is already selected for you by Android Studio, which is exactly
what you want. Don’t worry about what an Activity is right now; all will be revealed in
the chapters to come.

Go to the bottom of the window and press the Next button.

K

The final window is dedicated to setting up your empty Activity — in particular, giving
it a name.

1. Inthe Activity Name textfield, enter the name GameActivity. You'll notice that
the name of the layout automatically updates itself to activity_game.

2. Skip past the rest of the options and click Finish.

With the project creation taken care of, Android Studio will take all the information you
provided, and gather the required libraries and resources to generate a fresh project for
you.

Note: The "gathering" phase may take a while, depending on the speed of your
internet connection.

When that process finishes, Android Studio will show you your created project, with the
GameActivity.kt and activity_game.xml files already open for you:

[) [) B timefighter [~/Desktop/timefighter] - .../app/src/main/java/com/raywenderlich/timefighter/MainActivity.kt [app]
= H S « AN [=map v | P & @ 15 LV Q
_ timefighter app src main java com raywenderlich timefighter

B Android @ = @ — g activity_mainxml ¢ MainActivity.kt pe

Q

3 - app 1 package com.raywenderlich.timefighter v g

il manifests 2 immort B

L) java ; import ...

P V[com.raywenderlich.timefighter 6 & class MainActivity : AppCompatActivity() {

& ¢ MainActivity 7

s com.raywenderlich.timefighter (androidTest) 8 of override fun onCreate(savedInstanceState: Bundle?) {

< derlich.timefighter (test 9 super.onCreate(savedInstanceState)

32 com.raywenderlich.timefighter;(test) 10 setContentView(R. layout.activity_main)

generatedJava 11 }
= -
res 12 }

° @ Gradle Scripts =

?, ¥ build.gradle (Project: timefighter)

3

3 ¥ build.gradle (Module: app)

N 11gradle.properties (Global Properties)

- L1 gradle-wrapper.properties (Gradle Version)

@ = proguard-rules.pro (ProGuard Rules for app)

-% \1gradle.properties (Project Properties)

E & settings.gradle (Project Settings)

& s local.properties (SDK Location)

& g
O

@ 2

<4 9]

5 8

s o

S o

5 3

[

= TODO Terminal 4 Build = 6: Logcat Q) Event Log
|Z] Gradle build finished in 614 ms (9 minutes ago) 11 LF$ UTF-8 # Context: <no context> '

Android Studio

With your project created, you are now free to work on your project as you please.

Android Studio is a large and complex piece of software and, if you dive in without a
good map, you may find yourself lost!

Before you start to build you app, take a look at what Android Studio has to offer as part
of your app development experience.

/ tmp Timefighter app src main

app
manifests
< AndroidManifest.xml
java
com.raywenderlich.timefighter
¢ = GameActivity

1+ 1 Proiact

! 7- Structure

com.raywenderlich.timefighter (test)
res
drawable
o ic_launcher_background.xml
o ic_launcher_foreground.xml (v24)
layout
« activity_game.xml
mipmap
ic_launcher.png (5)
o ic_launcher.xml (anydpi-v26
ic_launcher_round.png (5)
o ic_launcher_round.xml (anydpi-v26
values
« colors.xml
o strings.xml
o Styles.xml
& Gradle Scripts
& build.gradle (Project
& settings.gradle (Project
& build.gradle (Module: app)
,19radle-wrapper.properties (Gradle Version)
= proguard-rules.pro (ProGuard F
.19radle.properties (Project Properties)
& settings.gradle (Projec 1gs)
.1local.properties (SDK Location) 2

&k Cantures

Timefighter)

Timefighter)

¥ 2- Favorites

A1 Ruild Variants

(& Terminal = 6: Logcat

Q Gradle build finished in 9s 653ms (3 minutes ago)

0: Messages » TODO

P NS Y}

com.raywenderlich.timefighter (androidTest)

GameActivity.kt - Timefighter - [/tmp/Timefighter]
timefighter) G Gamr app | 2 E 3 o B L B C:

0

com raywenderlich

< activity_game.xml € GameActivity.kt

package com.raywenderlich.timefighter
import ...

class GameActivity : AppCompatActivity() {

override fun onCreate(savedInstanceState: Bundle?) A
super.onCreate(savedInstanceState)
setContentView(R. layout.activity_game)

1) Event Log [¥] Gradle Console

131 LF: UTF-8% » 8

a|pe9 (5

J8J0|dx3 9|14 @1A8Q

1. The most obvious window that first appears to you is the Editor.

This window provides you with space to edit your app’s source code. It provides
syntax highlighting, auto completion for methods and objects as well as the ability
to drop breakpoints into your code while debugging. You’ll learn more about

breakpoints and debugging in "Chapter 4: Debugging." You’ll spend most of your
development time using the Editor to code your app to work exactly the way you

intend.

2. The other window that you’ll spend most of your time with is the Project
navigator, to the left of the Editor.

This window shows you everything your project contains; from code to image
assets, you can find it here. Android Studio already provides you with a lot to begin
with. You can see this by left-clicking on the arrow to the left of the items in the

Project navigator.

Don’t worry about these files for now. You’ll become well-acquainted with them in

the chapters to come.

K

Creating an Android virtual device

Note: If you have a physical Android device you want to use for development, feel
free to skip to the next section.

Looking at editors and files is great, but after you’re done writing code, you’ll likely
want to run your app. But before you can run your app, you need a device — real or
virtual — on which to run it! Take a look at the button highlighted in the following
image.

© [) GameActivity.kt - Timefighter - [/tmp/Timefighter]
1) tmp) Timefighter) app src main) java com raywenderlich timefighter) ‘¢ Gam \ = app » ﬁ el [_‘l _"v Fl (] Q
i 1§ Android v @ = - 1= 5 activity_gamexml g GameActivity.kt >
£ e
manifests s
e i AndroidManifest.xml 1 package com.raywenderlich.timefighter v
° java 2
.; com‘raywender.h(':h.hmeflghter 3 import .
£ & GameAdctll\-/n: —— 5
e com.raywenderlich.timefighter (androidTest) P P
'{fl com.ra;wenderlich.timeﬁghter (test) l; class GameACt1Vlty : AppcompatACtlv‘lty() {
res

g drawable 8 override fun onCreate(savedInstanceState: Bundle?) {
g & ic_launcher_background.xml 9 super.onCreate(savedInstanceState)
® i ic_launcher_foreground.xml (v24) 10 setContentView(R. layout.activity_game)

layou!') 11 }

o activity_game.xml 12 }

mipmap .

ic_launcher.png (5) 13 |
o ic_launcher.xml (anydpi-v26)
ic_launcher_round.png (5)

o ic_launcher_round.xml (anydpi-v26)

values

< colors.xml

o strings.xml
w o Styles.xml
£ & Gradle Scripts
2 & build.gradle (Project: Timefighter)
z & settings.gradle (Project: Timefighter)
* & build.gradle (Module: app)

,19radle-wrapper.properties (Gradle Version) o
-::i = proguard-rules.pro (ProGuard Rules for app) g
',>-T-, ,19radle.properties (Project Properties) 'I?'
] & settings.gradle (Project Settings) o
a Jilocal.properties (SDK Location) %
Y 3
[& Terminal = 6: Logcat % 0: Messages » TODO 1) Event Log [¥] Gradle Console

[C] Gradle build finished in 9s 653ms (3 minutes ago) 13:1 LF: UTF-8% X X « 80

This button allows you to create an Android Virtual Device, or AVD for short. This is
an emulator that pretends to be a device on your computer, which lets you test your app
without requiring a physical device. If you don’t have a physical device to test your app
with, you’ll need to create a virtual device before you can run your app.

Click the Android Virtual Device button, and a new window will appear.

This window shows all the available AVDs that exist on your machine. Since you’ve just
installed Android Studio, no AVDs will be available yet.

Android Virtual Device Manager

Your Virtual Devices

)
N Android Studio

Virtual devices allow you to test your application without
having to own the physical devices.

+ Create Virtual Device...

To prioritize which devices to test your application on,
visit the Android Dashboards, where you can get
up-to-date information on which devices are active in the
Android and Google Play ecosystem.

Click the Create Virtual Device button in the middle of the screen and the Select
Hardware window. This window allows you to select what kind of device you want your
AVD to emulate.

[JON) Virtual Device Configuration

Select Hardware

H Android Studio

Choose a device definition
Q-
Ch Nexus 5X
Category Name v \ Play Store \ Size \ Resolution \ Density
TV Pixel XL 5.5" 1440x2... 560dpi
Wear Pixel 2 XL 5.99" 1440x2... 560dpi o0
Size: large
m Pixel 2 5.0" 1080x1... 420dpi gzt::;ty: 'f:;'gdpi
Tablet Pixel 5.0" 1080x1... xxhdpi
Nexus S 4.0" 480x800 hdpi 50" 1920px
Nexus One 3.7" 480x800 hdpi
Nexus 6P 5.7" 1440x2... 560dpi
Nexus 6 1440x2... 560dpi
New Hardware Proflle Import Hardware Proflles Clone Device...
? Cancel Previous ﬁ Finish

You will already have a device selected for you: a Nexus 5X. You’ll use this device since
it closely emulates a real device used by many people.

In the bottom-right of the window, click Next. This will display the System Image
window, where you can choose the version of Android that runs on your emulator.

[JON] Virtual Device Configuration

) System Image

H Android Studio

Select a system image

_ x86 Images Other Images

Pie
Release Name \ API Level ¥ \ ABI \ Target

Pie Download 28 x86 Android 9.0 (Google Play)

Oreo Download 27 x86 Android 8.1 (Google Play) AP Level

Oreo Download 26 x86 Android 8.0 (Google Play) 28

Nougat Download 25 x86 Android 7.1.1 (Google Play) Android

Nougat Download 24 x86 Android 7.0 (Google Play) 9.0
Google Inc.
System Image
x86

We recommend these Google Play images because
this device is compatible with Google Play.

Questions on API level?
See the API level distribution chart

1%}

@ A system image must be selected to continue.

? Cancel Previous Finish

A number of tabs run along the top of the list within the window. The Recommended
tab is a list of Android versions that Google recommend you use to test your apps.

At the moment, those versions are grayed out. That’s because you haven’t installed any
of them onto your machine.

You’ll download the latest and greatest recommended by Android Studio. Select the top
item in the table and click the Download button in the Release Name column.

You'll see another legal agreement you need to agree to:

SDK Quickfix Installation

License Agreement

Android Studio

Licenses
* android-sdk-preview-license
+ Google Play Intel x86 Atom

To get started with the Android SDK Preview, you must agree to the following
terms and conditions. As described below, please note that this is a preview version
of the Android SDK, subject to change, that you use at your own risk. The Android
SDK Preview is not a stable release, and may contain errors and defects that can
result in serious damage to your computer systems, devices and data.

This is the Android SDK Preview License Agreement (the "License Agreement").

1. Introduction

1.1 The Android SDK Preview (referred to in the License Agreement as the “Preview”
and specifically including the Android system files, packaged APIs, and Preview
library files, if and when they are made available) is licensed to you subject to the
terms of the License Agreement. The License Agreement forms a legally binding
contract between you and Google in relation to your use of the Preview.

1.2 "Android" means the Android software stack for devices, as made available
under the Android Open Source Project, which is located at the following URL: http:
//source.android.com/, as updated from time to time.

1.3 "Google" means Google Inc., a Delaware corporation with principal place of
business at 1600 Amphitheatre Parkway, Mountain View, CA 94043, United States.

2. Accepting the License Agreement

2.1 In order to use the Preview, you must first agree to the License Agreement. You
may not use the Preview if you do not accept the License Agreement.

Decline @ Accept

Cancel Previous m Finish

Select Accept, then click Next.

The Component Installer window will appear and automatically download the version
of Android you selected.

| NON | SDK Quickfix Installation

. Component Installer

H' Android Studio

Installing Requested Components

SDK Path: /Users/darrylbayliss/Library/Android/sdk

Packages to install:
- Google Play Intel x86 Atom System Image (system-images;android-28;google_apis_playstore;x86)

Preparing "Install Google Play Intel x86 Atom System Image (revision: 5)".

Downloading
https://dl.google.com/android/repository/sys—img/google_apis_playstore/x86-28_r05.zip
"Install Google Play Intel x86 Atom System Image (revision: 5)" ready.

Installing Google Play Intel x86 Atom System Image in
/Users/darrylbayliss/Library/Android/sdk/system-images/android-28/google_apis_playstore/x86
"Install Google Play Intel x86 Atom System Image (revision: 5)" complete.

"Install Google Play Intel x86 Atom System Image (revision: 5)" finished.

Done

Cancel Previous Next m

Once the download has finished, Click the Finish button in the bottom-right. The
component installer window will disappear and the System Image window will appear
again. At this point, your Android version is ready to use. To move on, Click the Next
button in the bottom-right of the window.

The next and final window for creating your emulated device is a summary of the
characteristics your device will have.

[JoX) Virtual Device Configuration

) Android Virtual Device (AVD)

H Android Studio

Verify Configuration

AVD Name | Nexus 5X API 28

AVD Name
ED Nexus 5X 5.2 1080x1920 420dpi Change..
The name of this AVD.
=, .

w’ Pie Android 9.0 x86 Change...

Startup orientation D
Portrait Landscape

HinEifzs Graphics: Automatic ¢
Performance

Device Frame Enable Device Frame

Show Advanced Settings

? Cancel Previous Next Finish

This window gives you the opportunity to give your AVD a name and to confirm other
aspects of the device such as the Android version. You don’t need to do anything here,
so Click Finish at the bottom-right of the screen to create your AVD.

The current window will disappear. In the original AVD window that listed all available
AVDs, you’ll see your freshly created AVD ready for use:

00 ‘Android Virtual Device Manager

) Your Virtual Devices

H Android Studio

Type | Name | Playstore | Resolution | ap | Target CPU/ABI | Size on Disk Actions
ED Nexus 5X API 28 B 1080 x 1920: 420dpi 28 Android 9.0 (Google Play) x86 513 MB > S
? + Create Virtual Device... [%]

Setting up an Android device

Note: If you don’t have an Android device to use for development, read the
previous section on how to set up an Android Virtual Device.

One of the joys of Android development is having your app working on your own device
to show to your friends. But before you can install Timefighter onto your device, you
need to get your device up for use with Android Studio. The first thing to do is to
connect your Android device to your machine via a USB cable.

Note: If you’re using a Windows machine, you’ll need to download a USB driver
for your device first. You can download the driver and find instructions on
installing it at https://developer.android.com/studio/run/oem-usb.html.

On your device, open the Settings app.

Settings Q

A Mobile data is off v

v Suggestions +1

v Network & Internet
Wi-Fi, mobile, data usage, hotspot

Connected devices
Lo Bluetooth, cast, NFC

Apps & notifications
Permissions, default apps

. Battery

88% — 10 mins until fully charged
u Display

Wallpaper, sleep, font size
) Sound

Volume, vibration, Do not disturb
= Storage

29% used - 22.71 GB free

Note: If your device is running Android 8.0 (Oreo) or above, you need to tap
System first to find the About Phone section.

K

Scroll through the settings until you find the About Phone button and tap it.

& About phone (2]

Status
Phone number, signal, etc.

Legal information
Regulatory labels
Send feedback about this device

Model
Nexus 5X

Android version
8.0.0

Android security patch level
5 September 2017

Baseband version
M8994F-2.6.39.3.03

Kernel version

3.10.73-gf712c0503a8
android-build@wphs7.hot.corp.google.com #1
Mon Jul 24 16:41:25 UTC 2017

Now for the magical part! Scroll to the bottom of the About Phone screen, until the
build number item appears:

< About phone o
Legal information
Regulatory labels
Send feedback about this device

Model
Nexus 5X

Android version
8.0.0

Android security patch level
5 September 2017

Baseband version
M8994F-2.6.39.3.03

Kernel version

3.10.73-gf712c0503a8
android-build@wphs7.hot.corp.google.copi #1
Mon Jul 24 16:41:25 UTC 2017

Build number
OPR4.170623.006

When you see the build number item, tap it several times until you see a toast message
appear, informing you are a few steps away from being a developer. Keep tapping away
until you get another toast message telling you that you’ve become a developer.

Note: If your device is locked with a PIN, you will need to enter it first before you

can reach this stage.

So what did this magical button do? Tap the Back button to go to the previous Settings

page. Notice anything different?

é

®

E:I

11:17 & @

System

About emulated device
Android SDK built for x86

Languages & input
Gboard

Gestures

Date & time
GMT+00:00 Greenwich Mean Time

Backup
off

Reset options
Network, apps, or device can be reset

Multiple users
Signed in as Owner

Developer options

System update
Updated to Android 9

v4n

Q

A new item has appeared called Developer Options! Tap the option to check out all
the developer features available to you.

11:16 & @ v40

& Developer options Q

{B Memory
Avg 671 MB of 1.6 GB memory used
Take bug report

Desktop backup password
Desktop full backups aren't currently protected

Stay awake .

Screen will never sleep while charging

Enable Bluetooth HCI snoop log
Capture all Bluetooth HCI packets in a
file (Toggle Bluetooth after changing this
setting)

Running services
View and control currently running services

Picture color mode
Use sRGB

4]]

There’s a lot, here, but there is only one option you need right now: USB Debugging.
Scroll down to the option and toggle it on. A dialog will appear informing you of the
intended usage of USB debugging.

11:19 & @

Allow USB debugging?

USB debugging is intended for
development purposes only. Use it to copy
data between your computer and your

device, install apps on your device without
notification, and read log data.

CANCEL 0K

Granting USB debugging privileges is a potential security hole, so most devices have
this turned off by default. Since you will need to install apps over USB as a developer,
you need to turn this on.

When you are ready, tap OK and the USB Debugging toggle will enable.

11:20 & @ Y40
& Developer options Q
Debugging
USB debugging .

Debug mode when USB is connected

Revoke USB debugging authorizations

Bug report shortcut
Show a button in the power menu for
taking a bug report

Select mock location app
No mock location app set

Force full GNSS measurements
Track all GNSS constellations and
frequencies with no duty cycling

Enable view attribute inspection

Select debug app

Nn dahiin annlicatian cat

4 L]]

Congratulations: your device is now set up for development!

Running the app

It’s time to run Timefighter! Along the top of Android studio, there is a button that
looks like a green Play button:

@ @ B timefighter [~/Desktop/timefiahter] - .../app/src/main/java/com/raywenderlich/time|
= H S « A [=ap v D - & PO
_ timefighter . app src main java com raywenderlich timefightq

5 activity_main.xml G MainActivity.kt

§ 1 package com.raywenderlich.timefighter

Click the button, and a new window will appear over Android Studio.

@ @ Select Deployment Target

Connected Devices

1| LGE Nexus 5X (Android 8.0.0, API 26)

Available Virtual Devices
[l Nexus 5X API 26

Create New Virtual Device

? Use same selection for future launches Cancel [l

This is the Select Deployment Target window, showing you all available devices and
emulators you can use to run your app.

If you have a physical device with developer mode enabled, this will appear in the
Connected Devices section. If not, then the emulator you set up will be available in the
Available Virtual Devices section. If you have both, then well done for tackling both
sections!

Select either of the devices available and click OK on the bottom-right of the window.
Android Studio will begin building Timefighter and installing the built app on your
device. You can see this happening at the bottom of Android Studio.

' Installing APK « (X

When Android Studio finishes, Timefighter will appear on your device:

545 & P @ A]

timefighter

Hello World!

You’ve just built your very first Android App! To celebrate, let’s make it a little more
personal. Head back to Android Studio, and in the project navigator open app » res »
layout » activity_game.xml, then switch to the Text tab on the bottom.

s activity_main.xml G MainActivity.kt

1 <?xml version="1.0" encoding="utf-8"7> v
2 @ <android.support.constraint.ConstraintLayout

3 xmlns:android="http://schemas.android.com/apk/res/android"
4 xmlns:tools="http://schemas.android.com/tools"

5 xmlns:app="http://schemas.android.com/apk/res-auto"

6 android:layout_width="match_parent"

7 android:layout_height="match_parent"

8 tools:context=".MainActivity">

9

10 <TextView

11 android:layout_width="wrap_content"

12 android:layout_height="wrap_content"

13 android:text="Hello World!"

14 app:layout_constraintBottom_toBottomOf="parent"

15 app:layout_constraintLeft_toLeftOf="parent"

16 7 app:layout_constraintRight_toRight0f="parent"

17 v/ app:layout_constraintTop_toTopOf="parent"/>

18

19 </android.support.constraint.ConstraintLayout>

Don’t worry too much now about everything you see in this file. All you need to know is
that it represents the app screen that appeared on your device earlier. You’ll learn more
about this in the next chapter.

For now, inside the TextView tag, update android: text property to greet you with your
own name:

android: text="Hello Darryl!"

Click the green Play button again to run your app:

Timefighter

Hello Darryl!

Installing new versions of Android
studio

This book was written assuming a specific version of the Android SDK; as of this
writing, we used Android Pie API version 28 as a baseline. However, you might be
reading this book long after that version has been superseded. In that case, you may
need to install the latest versions of Android Studio and the Android SDK.

Note: Google engineers have decoupled Android Studio from versions of Android.
This means you can build apps in Android Studio with any version of the Android
operating system you want, including any future versions of the Android SDK.

Android Studio will do its best to prompt you when new versions of either Android
Studio or Android SDK are available; however, you don’t have to wait on Android Studio
to do that for you.

In the Android Studio menu, selecting Check for Updates will give you a dialog with
all things that can be updated on your machine, or which lets you know you're up to
date already.

If you’d like to download a newer (or older) version of the Android SDK, in the same
menu, select the Preferences... menu item.

Android Studio File Edit

About Android Studio
Check for Updates...

Preferences... 8,

Services >

Hide Android Studio &H
Hide Others \#¢H
Show All

Quit Android Studio #Q

|

In the Preferences dialog, drill down through the menu items in the tree to
Appearance & Behavior » System Settings » Android SDK.

In this window, there are two tabs to note: SDK Platforms and SDK Tools. In SDK
Platforms, you should see a list of all the available Android SDK.

[JoX) Preferences
Q- Appearance & Behavior > System Settings > Android SDK
Appearance & Behavior Manager for the Android SDK and Tools used by Android Studio
Appearance Android SDK Location: /Users/darrylbayliss/Library/Android/sdk Edit
=0 e Weel e SDK Platforms ~ SDK Tools SDK Update Sites
System Settings —
Each Android SDK Platform package includes the Android platform and sources pertaining to an
Passwords AP level by default. Once installed, Android Studio will automatically check for updates. Check
HTTP Proxy "show package details" to display individual SDK components.
X Name API Level Revision Status
DI Sl Android 9.0 (Pie) 28 6 Installed
GECas () Android 8.1 (Oreo) 27 3 Not installed
(") Android 8.0 (Oreo) 26 2 Partially installed
File Colors (] Android 7.1.1 (Nougat) 25 3 Not installed
Saes (] Android 7.0 (Nougat) 24 2 Not installed
(] Android 6.0 (Marshmallow) 23 3 Not installed
Notifications () Android 5.1 (Lollipop) 22 2 Not installed
Quick Lists [[J Android 5.0 (Lollipop) 21 2 Not installed
Path Variables [[J Android 4.4W (KitKat Wear) 20 2 Not installed
[[J Android 4.4 (KitKat) 19 4 Not installed
Keymap () Android 4.3 (Jelly Bean) 18 3 Not installed
Editor () Android 4.2 (Jelly Bean) 17 3 Not installed
Plugins] Android 4.1 (Jelly Bean) 16 5 Not installed
Version Control [[J Android 4.0.3 (IceCreamSandwich) 156 5 Not installed
R)] Android 4.0 (IceCreamSandwich) 14 4 Not installed
i, Eeauiilan, Pz by (] Android 3.2 (Honeycomb) 13 1 Not installed
Languages & Frameworks (] Android 3.1 (Honeycomb) 12 3 Not installed
Tools [[J Android 3.0 (Honeycomb) 1 2 Not installed
Kotlin Compiler] Android 2.33 ('Gingerbread) 10 2 Not Ensialled
[J Android 2.3 (Gingerbread) 9 2 Not installed
Experimental ["1 Android 2.2 (Frovo) 8 3 Not installed
Hide Obsolete Packages [| Show Package Details
? Cancel App “

Clicking on any one of the SDK in the list, and then clicking OK, will install that SDK.

In SDK Tools, you will see a list of all the available build tools that Android Studio and
your app have access to.

[JoX J
Q- Appearance & Behavior > System Settings > Android SDK
Manager for the Android SDK and Tools used by Android Studio

Preferences

Appearance & Behavior

Appearance Android SDK Location: /Users/darrylbayliss/Library/Android/sdk Edit

Menus and Toolbars

SDK Platforms SDK Tools SDK Update Sites

System Settings —
Below are the available SDK developer tools. Once installed, Android Studio will automatically
check for updates. Check "show package details" to display available versions of an SDK Tool.

HTTP Proxy Name Version Status

Passwords

Data Sharing Android SDK.Bui\d-TooIs Installed
I ("] GPU Debugging tools Not Installed
psies () LLoB Not Installed
Setilizl sl Sloke (J CMake Not Installed
File Colors () Android Auto API Simulators 1 Not installed
Scopes [CJ Android Auto Desktop Head Unit emulator 11 Not installed
o Android Emulator 28.0.22 Installed
Notifications Android SDK Platform-Tools 28.0.1 Installed
Quick Lists Android SDK Tools 26.1.1 Installed
Path Variables Android Support Library, rev 23.2.1 23.21 Installed
Keymap Documentation for Android SDK 1 Installed
; "] Google Play APK Expansion library 1 Not installed
Editor [) Google Play Instant Development SDK 1.6.0 Not installed
Plugins] Google Play Licensing Library 1 Not installed
Version Control Google Play services 49 Installed
N . [[] Google Web Driver 2 Not installed
Build, Execution, Deployment
! iy DEpIoY! Intel x86 Emulator Accelerator (HAXM installer) 7.3.2 Installed
Languages & Frameworks (J NDK 19.0.5232133 Not installed
Tools Support Repository
Kotlin Compiler ConstraintLayout for Android Installed
. Solver for ConstraintLayout Installed
Experimental - .- - 8 ———— . P
Hide Obsolete Packages [_] Show Package Details
2 Cancel ppl

Clicking on any one of them, and then clicking OK will install that SDK.

At this point in the book, don’t worry too much about why you would need to download
any of these items. You’ll learn more about each of these topics throughout the book.
However, it’s worth seeing these things now so that you’ll recognize them as you
encounter them in later chapters.

Where to go from here?

Well done getting your first app up and running! This is just the beginning; the next
few chapters in this section will teach you even more about the basics of Android
development. As you work through the chapters in this book, you’ll end up with a fully
featured app! Head on into the next chapter to start building out your app!

Chapter 2: Layouts

By Darryl Bayliss

If bricks and mortar are the foundation of a sturdy building, then Layouts are the
Android equivalent of a sturdy app. Layouts are incredibly flexible. They let you define
how to present your app’s user interface on the device. You can create Layouts in one of
two ways:

1. Using an XML file to declare the user interface ahead of time.
2. Writing Kotlin code to create the layout at runtime programmatically.

In this book, you’ll define your Layouts ahead of time using XML — that’s because
Android Studio has a powerful Layout editor that covers 90% of the cases you’ll ever
need when creating a user interface.

h raywenderlich.com 37

Getting started

Before diving into the wonderful world of Layouts, take a few moments to think about
what makes up an app. Most often, an app is a self-contained program that lets its users
perform one or more tasks. When you build an app, you want your users to accomplish
those tasks quickly and intuitively, which is why having a well-thought-out user
interface is so important.

The app you’ll build in this section, TimeFighter, is no different. It’s minimal in its
design, so usability isn’t an issue.

Your first task is to set up the user interface, which has two TextViews and one Button.

Locate the projects folder for this chapter and open the TimeFighter app inside starter.
The first time you open the project, Android Studio will take a few minutes to set up the
environment and update its dependencies. After that, you’re ready to rock and roll!

These are not the SDKs you're looking
for

When you open the project, you might get the following error in the Build tab:

Build Sync 3

Timefighter: sync failed at 31/01/2019, 21:58 with 1 error, 1 warning 15767 ms ERROR: Failed to install the following Android SDK packages as some licences have not been

platforms;android-28 Android SDK Platform 28
N To build this project, accept the SDK license agreements and install the missing components
® Load build 14ms Alternatively, to transfer the license agreements from one workstation to another, see http)
@ Configure build 1s M ms
@ allprojects 1ms Using Android SDK: /Users/darrylbayliss/Library/Android/sdk
Install missing SDK package(s)

® Run build /Users/darrylbayliss/Programming/Android/raywenderlich/Android Apprentice/ 1's 283 ms

a

X Y

Java compiler: (1 warning)
License for package Android SDK Platform 28 not accepted.
Gradle Sync Issues: (1 error)
/Users/darrylbayli: ar i oid/r derlich/Android Apprentice/lay
& app/build.gradle (1 error)
Failed to install the following Android SDK packages as some licences have not

i= TODO Terminal = “ Build Q Event

If you followed along in the previous chapter and installed a fresh version of Android
Studio, you may not see this error. However, if you’re already running Android Studio,
it’s possible that you don’t have the version of the Android SDK that was used to create
this project.

Do not fret young padawan learner; Android Studio will always do its best to help
resolve these sorts of issues for you. On the right, Android Studio provides you with a
convenient link, that when clicked, will install the required version of the Android SDK
and rebuild your project.

K

After this error disappears, you’ll see the following in the Build tab:

Build Sync
A Executing tasks: [:app:generateDebugSources]

> Task :app:preBuild UP-TO-DATE
B > Task :app:preDebugBuild UP-TO-DATE
> Task :app:compileDebugAidl NO-SOURCE
> Task :app:compileDebugRenderscript UP-TO-DATE
> Task :app:checkDebugManifest UP-TO-DATE
> Task :app:generateDebugBuildConfig UP-TO-DATE
> Task :app:prepareLintJar UP-TO-DATE
> Task :app:generateDebugSources UP-TO-DATE

I& Yl

BUILD SUCCESSFUL in @s
5 actionable tasks: 5 up-to-date

X Y% m o

i= TODO Terminal = 4 Build = 6: Logcat

Excellent! It’s time to get comfy with everything Android Studio has to offer.

The Visual editor

In the project structure sidebar on the left of Android Studio, expand app, res, and
layout. Then, double-click activity_main.xml and you’ll see a screen that looks like
this:

Palette Q % — ®©- O~ 0O Pixelv =28+ © AppTheme~ > Q3% @ @
Common Ab TextView @~ W 8, S F T
Text @ Button
M ImageView
Buttons

:= RecyclerView
<> <fragment>
Layouts I ScrollView
Containers =~ “® Switch

Widgets

Google

Legacy

Component Tree O —

“\, ConstraintLayout
Ab TextView- "Hello Darr...

Editing activity_main.xml in Visual Editor

Behold the Visual editor!

K

In design mode, the middle of Android Studio shows a few different screens.

The first screen, located in the middle next to what looks like a blueprint, is the preview
area. This is where you’ll begin to build the user interface.

At the bottom of the Visual editor, you’ll find two tabs: Design and Text. Click Text,
and you’ll see this:

timefighter) 1 app) [src) [main) = res) [layout) 25, activity_main.xml) ~ app v | P E-3 & 35 Gt ¥ v O O M L & K Q
§ Android ~ @ = & — o activity_mainxml EieiEm & — pos
3 app 1 <7xml version="1.0" encoding="utf-8"7?> & 3 » 9 e
a o v v 31%
& manifests c <android.support.constraint.ConstraintLayout 5 ~ © O3% & © %
) N xmlns:android="http://schemas.android.com/apk/res/android" S o~ ™, 8dp, S I~
java xmlns:tools="http://schemas.android.com/tools" & * - ®
generatedJava xmlns:app="http://schemas.android.com/apk/res-auto" =
res android:layout_width="match_parent" 3
drawable android:layout_height="match_parent" g'
tools:context=".MainActivity">
layout
“ activity_main.xml 1 <TextView
mipmap android:layout_width="wrap_content"
values android:layout_height="wrap_content"
. android:text="Hello Darryl!"
@ Gradle Scripts app:layout_constraintBottom_toBottom0f="parent"
¥ build.gradle (Project: timefight 1 app:layout_constraintLeft_toLeftOf="parent"

app:layout_constraintRight_toRightOf="parent"

& build.gradle (Module: app)
app:layout_constraintTop_toTopOf="parent"/>

11 gradle-wrapper.properties (Gr
= proguard-rules.pro (ProGuard ;¢ </android.support.constraint.ConstraintLayout>
11 gradle.properties (Project Prog

o
H @ settings.gradle (Project Settin

g

2 11 local.properties (SDK Location

7]

[N

@

2

H

2

£

i android.support.constraint.ConstraintLayout
*

Design Text

Editing activity main.xml in XML Editor

In the middle section of Android Studio, you’ll see the Text editor. This shows the XML
representation of the app’s first screen. You can create the interface here if you like, but
using the Design tab provides you with more visuals.

Click Design to switch back to design mode. You’ll start by adding a TextView to the
user interface. In the top-left of the middle section of Android Studio, you’ll see the

Palette:

Palette Q Q -

Common Ab TextView
Text @ Button
M ImageView
Buttons — .
:= RecyclerVi...
Widgets <> <fragment>
Layouts W ScrollView

Containers = “® Switch

Google

Legacy

Palette of interface components

This contains all of the built-in user interface components that you can use to build the
screens of your Android app. What’s even more useful is that you can drag and drop
from this palette directly into the Preview screen to add a component.

Open the Palette and select Text. The palette changes and shows everything text-
related.

Next, drag a TextView from the Palette — this is for your score label — and drop it in
the top-left of the Preview screen.

Palette Q ¢ — 9' @v D Pixelv == 28~ > @ 30% @ @ o
Common Ab TextView ©- ¥ 8, 2 F T
Ab Plain Text

Text
Ab password

Ab password (N...
Widgets Ab E-mail
Layouts Ab Phone
Containers = Ab Postal Address

Ab Multiline Text

Buttons

Google
) Ab Time
egacy
9 Ab Date
Ab Number
Component Tree S —

“\, ConstraintLayout
Ab TextView- "Hello Darr...
Ab textView- "TextView" (1)

Component tree view

Before moving on, it’s worth noting that although dragging and dropping components
into the Preview area is relatively easy to do, it can be tricky to get things to show up in
the right spot, especially when you’re dealing with projects that have many views.

K

As an alternative, you can drag components from the Palette directly into a
Component Tree, dropping it underneath the desired parent component.

esy activity_main.xml

Palette Q Q —_—
Common Ab TextView
Ab Plai
Text Ab Plain Text
Butt Ab Password
uttons
Ab Password (N...
Widgets Ab E-mail
Layouts Ab Phone
Containers = AL Postal Address
Ab e
Google Ab Multiline Text
] Ab Time
egac
gacy Ab Date
Ab Number
Component Tree a —

Ll. ConstraintLayout

Ab TextView- "Hello Darr...

Design Text

0
al

Ab textView !)

Keep that little feather in your cap as you progress through this book, because you may
find it easier to drop components in this way, and then deal with positioning them
later.

Positioning your views

At this point, you have the start of your app, with your TextView sitting in the top left-
hand corner. Come to think of it, how does the device know where to position the
TextView? What happens if someone rotates the device?

As it stands now, the app doesn’t know where to place the TextView — and you can
prove it!

In the Visual editor, drag the newly placed TextView somewhere in the middle of the
screen, like so:

Layout as seen in the Visual Editor

Click Run 'app' in the top-right of Android Studio and launch the emulator.

11:28 & V4

timefighter

TextView

Hello Darryl!

Layout as seen on device

Hey, that’s not where you placed the TextView! But don’t worry; in the next section,
you’ll ensure the TextView stays put.

Adding rules to your position

There are millions of Android devices out there that come in all shapes and sizes. To
ensure your app looks great on all of those different screens, you need to do a little
Layout work and give the TextView some rules on where it should show up on the
screen.

The Blueprint screen to the right of the preview gives you a visual representation of the
rules that exist within your Layout. You’ll use this tool to create new rules for your
TextView.

K

In the Preview screen, click and drag the TextView to the top-left corner of the screen.
Now, hover your mouse over the left side of the newly placed TextView in the Blueprint
screen. A circle with a white outline appears and a Create Left Constraint bubble pops

up:

Create Left Constraint |

_d—
- TG

Click and drag toward the left edge of the Blueprint screen, and you’ll see the TextView
move slightly to the right. At this point, release the mouse button.

Congratulations, you just created your first layout rule!

K

Next, you need to create the top layout rule. Move your mouse to the top of the
TextView until the outlined circle appears, and drag to the top edge of the screen until
the TextView moves down slightly. Release the mouse button again to create the
second layout rule.

To see what’s happening, select the TextView and look for a panel on the right side of
Android Studio in the Properties window. Look at the top of the Properties window,
and you’ll see a square with some chevrons inside:

Layout rule for your TextView

If you look closely, you’ll see two solid lines running from the left and the top of the
rectangle, pushing against two grey rectangles with a number 8 floating beside them.
These are the rules, or constraints, you just created that hold your TextView against
the edges of the screen, and they instruct the TextView how to position itself relative to
the screen’s edge.

If you want to position this TextView with greater control, you can adjust the margins
of the constraint by clicking the number beside the constraint line and selecting one of
the preset numbers in the drop-down or entering your own.

It’s time to finish off the screen!

Go back to the Palette window and drag another TextView into the Preview window,
this time putting it in the top-right corner of the screen to serve as your time remaining
label.

In the Blueprint window, select the new TextView and hover over the right edge of it
until the Create Right Constraint bubble appears. Create a new constraint against the
right side of the screen. Now, do the same for the top of the TextView against the top of
the screen.

You’ll end up with something like this:

TextView TextView

Hello Darry!

That takes care of the two TextViews. All that’s left is the Tap Me! button.

First, remove that TextView floating in the middle of the screen. Select the Hello User!
TextView and press the delete key — the TextView disappears.

With the TextView removed, you can add the button.

Once again, in the Palette window, click the Common tab. When you see the Button in
the Palette, click and drag it to the center of the screen. You may even see some helpful
dotted guidelines to help position your Button right in the center of the screen.

K

Now, you need to create constraints for the Button, just like you did for the TextViews.
This Button needs to stay in the center of the screen, so you need four constraints, one
for each side.

In the Blueprint screen, hover over each side of the Button and pull the connector
toward its respective edge of the screen. The Button will move around quite a bit as you
do this but don’t panic, it’s just trying to respect the constraints as you add them.

Keep dragging each constraint to the edge of the screen.

Timefighter

lextView TextView

BUTTON

Finally, click Run 'app’ from the top menu in Android Studio. Your emulator or device
loads the latest changes to your app, and all of your hard work is rewarded with an app
that contains two correctly placed TextViews and one Button.

Android Emulator - Nexus_5X_API|_0:5554

Timefighter

Where to go from here?

Although you learned a lot, you only used a fraction of the power that Constraints offer.
There’s a dedicated component for Constraints — ConstraintLayout — that provides
all of this functionality.

Other Layouts provide other structures your Views can leverage, such as LinearLayout
and FrameLayout among others. It’s recommended to use a ConstraintLayout where
possible. However, there are times where it might be awkward or not practical.

This book uses ConstraintLayout as its go-to Layout of choice. If you want to learn
more about it, review the documentation on ConstraintLayout on the Android
Developer: https://developer.android.com/training/constraint-layout/index.html.

K

Pat yourself on the back for making it this far! You’ve taken your first step into the
world of Android development.

If you had any problems following along with the starter app, review the completed
solution in the final folder for this chapter’s materials.

In the next chapter, you’ll attach some logic to your Button and make those TextViews
display something more interesting than the words “TextView”. You’ll also get your
first taste of writing code. See you there!

ter 3: Activities

A lifestyle of various activity — like cardio, strength training and endurance — can keep
you healthy. Although they’re all different, they each have a specific purpose or goal in
mind.

Android apps are similar — they’re built around a set of screens. Each screen is known
as an Activity and is built around a single task. For example, you might have a Settings
screen where users can adjust the app’s settings, or a Sign-in screen where users can log
in with a username and password.

In this chapter, you’ll start building an Activity focused around the gameplay for
TimeFighter — and you’ll finally get to lay down some code!

Getting started

Before you jump head first into writing code, you first need to understand how IDs
work. In Android, IDs play a fundamental role in connecting things, for example,
connecting Views to your code.

In the previous chapter, you positioned Views and established that the top-left
TextView will show the score, the top-right TextView will show the time and the
Button, when pressed, will increment the score. Connecting your code to these Views
will require each to have its own ID.

h raywenderlich.com 52

If you were following along making your app, open it and keep using it for this chapter.
If not, don’t worry — locate the projects folder for this chapter and open the
TimeFighter app inside the starter folder.

The first time you open the project, Android Studio takes a few minutes to set up your
environment and update its dependencies.

Open activity_main.xml where you built your Layout and make sure you’ve selected
Visual editor. Next to the Palette tab, you’ll see a window called the Component

Tree:
Palette Q & — € @v 0 Pixelv == 28+ (© AppTheme~ > @ 33% @ @
Common Ab TextView ®~ Wi 8, S H| T~
Text @ Button
M ImageView
Buttons — .
:= RecyclerView
Widgets

<> <fragment>
Layouts M ScrollView
Containers =~ “® Switch
Google

Legacy

Component Tree o —

“\, ConstraintLayout
Ab textView4- "TextView"
Ab textView2- "TextView"
@ button4- "Button"”

Design Text

BUTTON

This window provides you with an overview of the Views available in your Layout and
their relationship relative to one another.

In the Component Tree, click on the row labeled button, or buttonX, where X is a
number. This action highlights the Button in the middle of the screen and updates the
Properties window on the right with details about the Button.

Attributes Q &% —
ID button4
layout_width ip_content | ¥
layout_height ip_content | ¥

8 v

8 v
50

Button
style uttonStyle | ¥
onClick none v
background

TextView
text Button
text

contentDescrip

textAppearar = Material v
fontFamily s-serif-medium | ¥
typeface none v
textSize 14sp v

The Button in the screen above already has an ID of button4, but this isn’t very
descriptive.

Note: In your project, it might have a different string value.

K

Theoretically, you could leave the ID as button4, but it’s unlikely that in a year that’ll
mean anything to you. Using descriptive IDs makes it easier to know which IDs refers to
which Views.

Change the value of the ID field from button to tap_me_button.

It’s also a good idea to give the Button a more descriptive name too. Change the value
of text in the TextView section of the Properties window to Tap me!

Attributes Q &8 —
ID tap_me_button
layout_width ip_content ¥

layout_height ip_content | ¥

50

Button
style uttonStyle | =

onClick none v

background

TextView

text Tap me!
text

contentDescrip

textAppearar | Material v
fontFamily s-serif-medium | ¥
typeface none v
textSize 14sp v

Select the TextView on the top-left from the Component Tree. Set its ID to
game_score_text_view and change the text to Your Score: %1$d. Finally, select the

K

TextView you added to the top-right and change its ID to time_left_text_view and its
text to Time left: %1$d.

So, what’s the deal with the “%1$d”? That’s a placeholder for any integer you want to
inject into your text values. You’ll fill in those placeholders later.

At build time, Android Studio takes these IDs and turns them into constants that your
code can access through what’s known as the R file.

You’ll see more about R files in the upcoming sections, but for now, know that Android
takes an ID such as game_score_text_view that you assigned to your View in your
Layout and creates a constant named R. id.game_score_text_view, which you can then
access in your code.

Run your app now in the emulator or on a device, and you’ll see these text changes
reflected on the screen:

BN F=.4100% W 3:26 PM

Timefighter

Your Score: %1$d Time left: %1$d

TAP ME!

Now that all of the Views in the project have IDs, you can finally start exploring and
understanding your first Activity.

In the Project navigator on the left, ensure that the app folder is expanded. Navigate to
MainActivity.kt, which is located in src/main/java/com.raywenderlich.timefighter.
Open the file, and you’ll see the following contents:

package com.raywenderlich.timefighter

import android.support.v7.app.AppCompatActivity
import android.os.Bundle

é{ais MainActivity : AppCompatActivity() {
éCeiride fun onCreate(savedInstanceState: Bundle?) {
éﬁpgr.onCreate(savedInstanceState)
éétgontentView(R.layout.activity_main)
y ¥

This is where the logic for your game screen goes. Take a moment to explore what it
does:

1. MainActivity is declared as extending AppCompatActivity. It’s your first and only
Activity in this app. What AppCompatActivity does isn’t important right now; all
you need to know is that subclassing it is required to deal with content on the
screen.

2. onCreate() is the entry point to this Activity. It starts with the keyword override,
meaning you’ll have to provide a custom implementation from the base
AppCompatActivity class.

3. Calling the base’s implementation of onCreate() is not only important — it’s
required. You do this by calling super.onCreate. Android needs to set up a few
things itself before your own implementation executes, so you notify the base class
that it can do so at this point.

4. This line takes the Layout you created and puts it on your device screen by passing
in the identifier for the Layout. Android Studio generates the identifier in the R file
at build time using the Layout file name created in the previous chapter.

So, if you had a Layout named really_good_looking screen, then the identifier
generated would be R. layout. really_good_looking_screen.

These four lines are key ingredients in creating Activities in Android. You’ll see them in
every Activity you create. In the most general sense, any logic you add must come after
calling setContentView.

Note: onCreate() isn’t the only entry point available for Activities, but it is the
one you should be most familiar with. onCreate() also works in conjunction with
other methods you can override that make up an Activity’s lifecycle.

This book covers a number of those lifecycle methods, but if you’re curious, you
can find out more at

Replace the entire contents of MainActivity.kt with the following skeleton:

package com.raywenderlich.timefighter

import
import
import
import
import
import

android.
android.
android.
android.
android.
android.

0s.Bundle

0s.CountDownTimer
support.v7.app.AppCompatActivity
widget.Button

widget.TextView

widget.Toast

class MainActivity : AppCompatActivity() {
private lateinit var gameScoreTextView: TextView
private lateinit var timeLeftTextView: TextView
private lateinit var tapMeButton: Button

override fun onCreate(savedInstanceState: Bundle?) {
super.onCreate(savedInstanceState)
setContentView(R. layout.activity_main)

// connect views to variables

¥

private fun incrementScore() {
// increment score logic

}

private fun resetGame() {
// reset game logic

¥

private fun startGame() {
// start game logic

¥

private fun endGame() {
// end game logic

K

¥
}

This contains a number of placeholder functions. You’ll explore the purpose of each
one in this chapter; however, this skeleton gives you an overview of the things you’ll
need to complete this app.

Note: Sometimes, when using new objects in your classes, Android Studio won’t
recognize them until you import the class definition. This is shown by Android
Studio highlighting the object in red.

To import the class definition:
» macOS: Click the object and press Alt-Return
» Windows: Click the object and press Alt-Enter.

You can also choose to let Android Studio handle imports automatically for you
when pasting code.

On macOS, select Android Studio » Preferences » Editor » General » Auto
Import from the top menu. Set Insert imports on paste to All. Finally, tick the
Add unambiguous imports on the fly checkbox.

To do this on Windows or Linux, select File » Settings » Editor » Auto Import
from the top menu. Set Insert imports on paste to All. Finally, tick the Add
unambiguous imports on the fly checkbox.

As an Android developer, one of the most common things your app will do is react to
button clicks, and then convert those clicks into a change reflected in the app.

In MainActivity, you added three variables: gameScoreTextView, timeLeftTextView and
tapMeButton. The first thing you need to do is attach these variables to the Views you
added to the Layout.

In onCreate(savedInstanceState: Bundle?), add the following code immediately after
setContentView:

// 1
gameScoreTextView = findViewById(R.id.game_score_text_view)

timeLeftTextView = findViewById(R.id.time_left_text_view)

K

tapMeButton = findViewById(R.id.tap_me_button)

// 2
tapMeButton.setOnClickListener { incrementScore() }

Going through the code:

1. findViewById searches through the activity_game Layout to find the View with the
corresponding ID and provides a reference to it you can store as a variable.

2. setOnClickListener attaches a click (or tap) listener to the Button which calls
incrementScore(). You’re instructing the Button to listen for a click; then whenever
it’s clicked, you increment the score.

You’re nearly there now. Add a new variable to the top of MainActivity and initialize it
to 0:

private var score = 0
Next, replace the contents of incrementScore() with the following:

private fun incrementScore() {
score++

val newScore = "Your Score: $score"
gameScoreTextView.text = newScore

You increment the new score variable to the next number and use that number in a
string to use with your score text view.

Finally, you use newScore to set the text of gameScoreTextView.

Ready to see things in action? Run the app and tap the button a few times. The score in
the top-left corner of the screen increments with each tap.

BN 7= .4100% W 3:32 PM
Timefighter
Your Score: 11 Time left: %1$d
TAP ME!
~ o ¢

You just hit a milestone in your Android app development: You created a View, gave it
an ID, accessed it in code and reacted to user input. These are the fundamental tasks of
app development, and you’ll repeat this cycle many times in your career. Take a
moment to appreciate this significant accomplishment.

You’ve gotten your first taste of writing code, you have something up and running
resembling a game, and you undoubtedly want to take things further.

One of the most important elements of any app is the text, or strings, displayed on the
screen. As you move ahead in your Android development career, you’ll do well to
master the ins and outs of using strings.

For instance, you’re using English labels in your app, but that doesn’t mean it’s the only
language your app can support. Supporting multiple languages in your app can often
lead to broader markets, and it’s a feature you should seriously consider when putting
your app on the Google Play store.

In the previous section, you set gameScoreTextView to use the string "Your Score:
$score"). This works well if you’re only targeting English-speaking users. But how
would you support one, two or even a dozen other languages?

The answer to this is String resources.

In the Project navigator, expand res/values and open strings.xml. You’ll see a file with
the following content:

<resources>
<string name="app_name">Timefighter</string>
</resources>

strings.xml gives you a place to store all of the strings used in your app. This helps to
keep strings from being sprinkled throughout your code. This also makes it easy to add
support for another language. Rather than hunting through the entire project to change
all of the strings, you copy the file and change it to hold the language translations of
your choice.

You’ll use this file to keep your English text in a separate location. Add the following
lines under the app_name string:

<resources>
<string name="app_name">Timefighter</string>
<string name="tap_me">Tap me!</string>
<string name="your_score">Your Score: %1$d</string>
<string name="time_left">Time left: %1$d</string>
<string name="game_over_message'">Times up! Your score was: %1%$d</
string>
</resources>

K

Now, go back to incrementScore() in MainActivity.kt and replace the contents of that
method with the following:

private fun incrementScore() {
score++

val newScore = getString(R.string.your_score, score)
gameScoreTextView.text = newScore

}

getString is an Activity-provided method that allows you to reference strings from the
R file name or ID. In this case, you’re retrieving the strings you added earlier to
strings.xml. You also pass in an int for the placeholder %1$d you added way back at
the beginning of this chapter.

Note: To learn more about String Resources in Android, review the Android
developer documentation at

where you can also learn about string arrays and
plurals.

Besides following the best practices for strings, your app is also ready for porting to
another language. Sprinkling strings throughout your app is one of the worst types of
technical debt to incur (Technical debt reflects the extra development work that arises
when code that is easy to implement in the short run is used instead of applying the
best overall solution).

With that out of the way, you can get back to developing your game.

Currently, the game lets you increment the score infinitely. However, for a game named
TimeFighter, there isn’t much time fighting going on. In this section, you’ll add a
countdown timer that limits the amount of time you have to increase your score.
CountDownTimer is an Android class that starts with a value in milliseconds and counts
down until finished.

At the top of MainActivity, add the following new properties underneath the View
properties:

private var gameStarted = false

private lateinit var countDownTimer: CountDownTimer
private var initialCountDown: Long = 60000

K

private var countDownInterval: Long = 1000
private var timelLeft = 60

Here, you declare new properties for your game: a Boolean property to indicate when
the game has started, a countdown object named countDownTimer for you to race
against, a count down interval variable to set the rate at which the countdown
decrements and finally a variable to hold how many seconds are left in the countdown.

Finally, replace resetGame () with the following method:

private fun resetGame() {
// 1
score = 0

val initialScore = getString(R.string.your_score, score)
gameScoreTextView.text = initialScore

val initialTimeLeft = getString(R.string.time_left, 60)
timeLeftTextView.text = initialTimelLeft

// 2
countDownTimer = object : CountDownTimer(initialCountDown,
countDownInterval) {
// 3
override fun onTick(millisUntilFinished: Long) {
timeLeft = millisUntilFinished.toInt() / 1000

val timeLeftString = getString(R.string.time_left, timeLeft)
timelLeftTextView.text = timelLeftString
}

override fun onFinish() {
// To Be Implemented Later
¥
¥

// 4
gameStarted = false

}

Here, you initialize your game with a default state. You may have noticed when you first
ran your game before there were oddities like symbols appearing next to the time left
TextView or the score TextView before you started the game. This method ensures that
your game always has a default state to begin.

Take a closer look:

1.

You first set the score to 0, then create a variable to store the score as a string, using
the getString method to insert the score value into your string stored in
strings.xml. You then initialize gameScoreTextView with this value. You repeat the
process for the amount of time left and assign it to timeLeftTextView.

You create a new CountDownTimer object and pass it into initialCountDown and
countDownInterval, set to 60000 and 1000. The CountDownTimer object will count
from 60000 milliseconds, or 60 seconds, in 1000 milliseconds, or 1 second,
increments, until it hits zero.

Inside the CountDownTimer you have two overridden methods: onTick and
onFinish. onTick is called at every interval you passed into the timer; in this case,
once a second. Each interval, the timeLeft property is updated with the time
remaining by converting the millisecond representation into seconds. You then
update timeLeftTextView with this new time. You call onFinish when
CountDownTimer has finished counting down. You’ll add some code to this later.

You inform your gameStarted property that the game has not started by setting it to
false.

The next step is to hook up resetGame() to run when you first create the Activity. You
can do this in onCreate().

Add the following line to the bottom of onCreate():

resetGame ()

Run your app. Things should look a little less jarring. The score TextView and time left
TextView now show numbers instead of placeholders. Nice!

Click the Tap me button, and — no countdown! What is this madness?

11:46 & ©
Timefighter

Time left: 60

Your Score: 25

TAP ME!

Ah — you haven’t told your countdown timer to begin counting down once the button
has been clicked. Let’s do that now. Replace startGame() with the following:

private fun startGame() {
countDownTimer.start()
gameStarted = true

You inform the countdown timer to start. You also set gameStarted to true to say the
game has indeed started.

Finally, add the following lines to the top of incrementScore():

if (!gameStarted) {
startGame()
}

This code snippet checks to make sure the game has started when you tap the button. If
not, then it starts the game for you.

K

Run the app to see what’s changed.

11:49 & v4i
Timefighter

Your Score: 14 Time left: 34

TAP ME!

Nice! Your countdown timer is now ticking merrily away.

Ending the game

Huzzah! T-Minus 60 seconds and counting to do — what exactly? The answer is
“nothing” because the game doesn’t know what to do after 60 seconds. Time to fix that!

InMainActivity, replace endGame() with the following code:

private fun endGame() {

Toast.makeText(this, getString(R.string.game_over_message, score),
Toast.LENGTH_LONG).show()

resetGame()

You make use of a Toast to notify something to the user. A Toast is a small alert that
pops up briefly to inform you of some event that’s occurred — in this case, the end of
the game.

K

You pass into the Toast the Activity you want the Toast to appear on and the message to
display. The end game state is a good time to display the score along with the game
over message you put into strings.xml.

You also inform the Toast to display for a long time with Toast.LENGTH_LONG, which is a
few seconds, and then show the Toast. Once that’s done, you reset the game. You need
to call endGame () from somewhere. The best time to call this is when countDownTimer
finishes counting.

Head over to resetGame() and add the following line to the onFinish callback:
endGame ()

Run your app again, and keep clicking the button. The countdown will continue to
decrement until it hits 0. Once it does, you’ll see the Toast with your score and game
over message, at which point the game resets.

Times up! Your score was: 21

With a small amount of code, you created a functional game while learning some of the
foundational elements of building an Android app. Although this Activity is small, they
can get complicated as you add more Views. However, no matter its size, creating an
Activity has the same flow:

1. Create a Layout for the Activity.

2. Give the Views in your Layout valid IDs.

3. Create properties in the Activity code and reference those IDs.
4. Manipulate your Views as needed or required.

If you find using findViewById cumbersome, you can leverage Kotlin to find your Views
for you using the Kotlin Android Extensions (KAE) library. This library binds your
Views to your code automatically, and provides many more benefits. You can learn how
to use KAE over at:

Next, you’ll learn how to fix potential problems in your app using Android debugging
techniques.

K

By Darryl

In the previous two chapters, you developed TimeFighter into a full-fledged app. In this
chapter, you’ll focus on debugging it.

All apps have bugs. Some are subtle, such as glitches within the UI, while others are
obvious, such as outright crashes. As a developer, it’s your job to keep your app bug-
free.

Android Studio provides developers with some tools to help track down and fix bugs. In
this chapter, you’ll learn how to:

1. Debug your app using Android Studio’s debug tools.
2. Add landscape support to TimeFighter.

Getting started

If you’ve been following along, open your project in Android Studio and keep using it
for this chapter. If not, don’t worry. Locate the projects folder for this chapter and open
the TimeFighter app inside the starter folder.

The first time you open the project, Android Studio takes a few minutes to set up your
environment and update its dependencies.

You might not have noticed, but TimeFighter has a bug. Start the app in the emulator or
on your device. Push TAP ME a few times, and then change the orientation of the
device to landscape.

Note: For Android Pie devices. You may need to enable auto-rotate on your device

h raywenderlich.com 69

or emulator if the screen doesn’t rotate automatically.

To do this, swipe the notification drawer down to reveal the quick settings and
ensure the auto-rotate button is colored green to signify it’s enabled.

2:27
Timefighter
Your Score: 0 Time left: 60]
O
TAP ME!
<

Notice anything strange? TimeFighter resets the game when you rotate the device.
Whoops! To understand why this happens, you need to put on your debugging hat and
analyze the code.

Add some logging

The first debugging approach is to add logging to your app. With logging, you can find
out what’s happening at certain potins within your code. You can even log and check
the values of your variables at runtime.

In MainActivity.kt, add the following property to the top of the existing properties:

// 1
private val TAG = MainActivity::class.java.simpleName

Then, add the following line below the call to setContentView in onCreate():

// 2
Log.d(TAG, "onCreate called. Score is: $score'")

K

Having a look at the code:

1. You assign the name of your class to TAG. The convention is to use the class name in
log messages. This makes it easier to see which class the message is coming from.

2. You Log a message when the Activity is created. Your app informs you when
onCreate() is called and informs you of the current value in score. Injecting $score
into the message is an example of string interpolation in Kotlin. At runtime,
Kotlin looks for score and replaces it in the log message.

Run the app again. After it’s loaded, go to Android Studio. At the bottom of the window
there’s a button labeled Logcat. Click that button, and Android Studio displays a
console-like window at the bottom:

Logcat

¥ Emulator Nexus_5X_API_28 And ¥ com.raywenderlich.timefighter (25 «

2019-02-10 14:33:01.008 1870—1980/?'I/GhssLocationProvider: WakelLock

q
“ 2019-02-10 14:33:01.009 1870-1890/? I/GnssLocationProvider: WakelLock 1
=+ 2019-02-10 14:33:02.012 1870-1980/? I/GnssLocationProvider: WakelLock 4
2019-02-10 14:33:02.015 1870-1890/? I/GnssLocationProvider: WakelLock 1
T 2019-02-10 14:33:03.014 1870-1980/? I/GnssLocationProvider: WakelLock 3
J 2019-02-10 14:33:03.016 1870-1890/? I/GnssLocationProvider: WakelLock 1
2019-02-10 14:33:03.952 1870-1890/? E/memtrack: Couldn't load memtrack
= 2019-02-10 14:33:03.952 1870-1890/? W/android.os.Debug: failed to get
2019-02-10 14:33:04.018 1870-1980/? I/GnsslLocationProvider: WakelLock
= 2019-02-10 14:33:04.019 1870-1890/7 I/GnssLocationProvider: WakeLock

2019-02-10 14:33:05.019 1870-1980/? I/GnssLocationProvider: WakelLock
2019-02-10 14:33:05.022 1870-1890/? I/GnssLocationProvider: WakelLock

~ Q) =~ Q)

>

= TODO Terminal “§ Build (7 Profiler P, 4:Run

With Logcat, you can see everything your emulator or device is doing via log messages,
including messages coming from outside of your app. For now, you can ignore most
messages and filter down to only the ones you’ve added yourself.

In the Logcat window, there’s a search bar with a magnifying glass. The text you enter
here filters the log messages so that you’ll only see log messages that match that text.

In the Logcat search bar, type the name of your Activity — MainActivity — and watch
as the filter gets applied.

Logcat

i¥ Emulator Nexus_5X_API_28 Anc ¥ com.raywenderlich.timefighter (2¢ Debug v Q. MainActivity

2019-02-10 14:36:46.145 26115-26115/com. raywenderlich.timefighter D/MainActivity: onCreate called. Score is: @

[P

LI ||

»

iZ TODO M Terminal 4 Build = = 6:logcat (7 Profiler P, 4:Run

Excellent, you can now see the log messages you added earlier. The score is currently 0
because you haven’t yet started the game.

Try to reproduce the bug by rotating the screen as you play the game.

Logcat

i# Emulator Nexus_5X_API_28 And ¥ com.raywenderlich.timefighter (2¢ ¥ Debug v L~ MainActivity

2019-02-10 14:36:46.145 26115-26115/com. raywenderlich.timefighter D/MainActivity: onCreate called. Score is: @
2019-02-10 14:38:32.942 26115-26115/com. raywenderlich.timefighter D/MainActivity: onCreate called. Score is: @

I& | m

That’s strange! Why is the score reset to 0? You’ll work that out in the next section.

Note: You’ll only scratch the surface of Logcat in this chapter. For more

information about Logcat and everything it can do, read the Android developer
documentation:

From your log messages, you can establish that score is reset to 0 whenever you rotate
the device. But why? The reason for this relates to how Android handles device
orientation changes.

When Android detects a change in orientation, it does three things:
1. Attempts to save any properties for the Activity specified by the developer.
2. Destroys the Activity.

3. Recreates the Activity for the new orientation by calling onCreate(), which resets
any properties specified by the developer.

But it’s more than just orientation changes. Android performs these steps any time
there’s a change to the configuration of a device. A configuration change can happen
for many reasons, including changes to the orientation or the selected device language.
In fact, your Activity can get destroyed and recreated several times while the user is
using the app, so it’s incredibly important that you develop your app so it can recover
from these changes.

Back in MainActivity.kt, add the following companion object at the bottom of the
properties you declared earlier:

// 1
companion object {

private const val SCORE_KEY = "SCORE_KEY"

private const val TIME_LEFT_KEY = "TIME_LEFT_KEY"
}

Next, add the following methods below onCreate():

// 2
override fun onSavelInstanceState(outState: Bundle) {

super.onSaveInstanceState(outState)

outState.putInt(SCORE_KEY, score)
outState.putInt(TIME_LEFT_KEY, timelLeft)
countDownTimer.cancel()

Log.d(TAG, "onSavelnstanceState: Saving Score: $score & Time Left:
$timeLeft")
b

// 3
override fun onDestroy() {
super.onDestroy()

Log.d(TAG, "onDestroy called.")
}

Here’s what’s happening:

1. You create a companion object containing two string constants, SCORE_KEY and
TIME_LEFT_KEY, to track the variables you want to save when the orientation
changes. You’ll use these constants as keys into a dictionary of saved properties.

2. You override onSaveInstanceState and insert the values of score and timeLeft into
the passed-in Bundle, which is a hashmap Android uses to pass values across
different screens. You also cancel the game timer and add a log to track when the
method is called.

3. You override onDestroy(), a method used by the Activity to clean itself up when it is
being destroyed. You call super so your Activity can perform any essential cleanup,
and you add a final log to track when onDestroy() is called.

Run your app again. Play the game for a few seconds, change the orientation, and then
look at the Logcat output:

Logcat

i¥ Emulator Nexus_5X_API_28 Anc ¥ com.raywenderlich.timefighter (2¢ + Debug v Q. MainActivity

2019-02-10 14:48:08.428 26615-26615/com. raywenderlich.timefighter D/MainActivity: onCreate called. Score is: @

2019-02-10 14:48:17.031 26615-26615/com. raywenderlich.timefighter D/MainActivity: onSaveInstanceState: Saving Score: 9 & Time Left: 57
2019-02-10 14:48:17.031 26615-26615/com. raywenderlich.timefighter D/MainActivity: onDestroy called.

2019-02-10 14:48:17.096 26615-26615/com. raywenderlich.timefighter D/MainActivity: onCreate called. Score is: @

1€ =

The Activity is still resetting the score back to 0. However, the log statement in
onSaveInstanceState() is informing you that the score and the amount of time left are
saved. How can you verify this? Breakpoints!

Breakpoints

Logging is an effective way of understanding what your app is doing, but it can be
tedious to write a log message, recompile, rerun your app and attempt to reproduce the
bug. But don’t worry, there’s another way!

Android Studio provides breakpoints. With breakpoints, you can pause the execution
of your app to inspect its current state.

In MainActivity.kt, scroll to onSaveInstanceState() and find the log line at the
bottom of the function. Click on the grey border (also known as the gutter) to the left of
the line.

® outState.putInt(TIME_LEFT_KEY, i3
countDownTimer.cancel()
@ Log.d(TAG, msg: "onSaveInstanceSt
}
:S 1 nuorrido fun nnDoctrovu() L

This adds a red dot to the gutter to indicate where the breakpoint will trigger. Click the
Debug button at the top of the window, it looks like a green bug.

,app v | Py =

The app loads in the same way it did when using the run button, except this time, it
attaches the debugger.

Once the app reloads, rotate the screen. Android Studio changes windows and
highlights the breakpoint.

of override fun onSaveInstanceState(outState: Bundle) { outState: “Bundle[{TIME

- LEFT_KEY=60, android:viewHierarchyState=Bundle[{android:views={16908290=android.view.AbsSavedState$1@209b347,

super.onSaveInstanceState(outState)

outState.putInt(SCORE_KEY, score)
outState.putInt(TIME_LEFT_KEY, timeleft) outState: "
countDownTimer.cancel() countDownTimer: MainActiv.

[
/73 7
MainActivity > onSavelnstanceState()
Debug: app. o —
I» Debugger [E]Console +* = variables +* = & ¥ ¥ 1 |
mn this = {MainActivity@11121}
- outState = {Bundle@11122} "Bundle[{TIME_LEFT_KEY=60, android:viewHierar indle[{android:vi 16908290=android.view. 1@209b347, 2131165190=android.support.v7.widge... Vie

Your app is paused at the line that has the breakpoint. In this case, it’s the log message
you added earlier where you save the game variables to a Bundle.

When Android Studio hits a breakpoint, it gives you the opportunity to inspect your
app’s state at that exact moment in time. You can see this information in the Debug
window below your code. Move to the debugger view and click the arrow next to this =
{MainActivity}.

this = {MainActivity@11121}

“ TAG = "MainActivity"

f _$_findViewCache = null

f countDowninterval = 1000

f countDownTimer = {MainActivity$resetGame$1@11126}

f gameScoreTextView = {AppCompatTextView@11127} "android.support.v7.widget. AppCompatTextView{20c532a V.ED..... 21,21-239,72 #7f07003d app:id/game_score_text_view}"
f gameStarted = false

f initialCountDown = 60000

f score=0

f tapMeButton = {AppCompatButton@11128} "android.support.v7.widget.AppCompatButton{d12651b VFED..C.. 425,729-656,855 #7f070084 app:id/tap_me_button}"

f timeLeft = 60

f timeLeftTextView = {AppCompatTextView@11129} "android.support.v7.widget. AppCompatTextView{98576b8 V.ED..... 853,21-1059,72 #7f07008a app:id/time_left_text_view}"

f> mDelegate = {AppCompatDelegatelmpl@11130}
f _mResources = null

The number postfixing your MainActivity is likely different since this number indicates
where your Activity is allocated in memory.

You might recognize some of the values as your own. However, there are also other
values that may be unfamiliar to you. These are values specific to an Activity and give
you an appreciation of how much work the Activity class does behind the scenes.

Also, when Android Studio hits a breakpoint, it inlines some debugging information
within your code, which makes it even easier to inspect things.

Time to put this knowledge to use. Close this in the debugger, expand outState, and
then expand mMap. You’ll see some familiar values.

= this = {MainActivity@11121}

= outState = {Bundle@11122} "Bundle[{TIME_LEFT_KEY =60, android:viewHierarchyState=Bundle[{android:views={
f mClassLoader = {BootClassLoader@11162}
f mFlags =0

{» mMap = {ArrayMap@11163} ArrayMap@11163, size = 5
= value[0] = {Integer@11165} 60
= value[1] = {Bundle@11166} "Bundle[{android:views={16908290=android.view.AbsSavedState$1@209b347,
= value[2] = {Integer@11167} O
= value[3] = {Integer@11168} 1073741823
= value[4] = {FragmentManagerState@11169}
mParcelledByNative = false
mParcelledData = null
shadow$_klass_ = {Class@3832} "class android.os.Bundle" ... Navigate

shadow$_monitor_=0

“h —h —h —h

Compare those numbers with the values of score and timeLeft — they should match.
This informs you that those values are now safely stored in the Bundle. In the next
section, you’ll see how to restore those numbers when the device orientation changes.

Restarting the game

So far, you’ve only used onCreate() to set up your Activity. You’ve yet to use the
savedInstanceState object passed in as a parameter. Are you ready?

Inside onCreate(), replace the call to resetGame () with the following:

if (savedInstanceState != null) {
score = savedInstanceState.getInt(SCORE_KEY)
timeLeft = savedInstanceState.getInt(TIME_LEFT_KEY)
restoreGame()

} else {

) resetGame ()

Here, you check to see if savedInstanceState contains a value. If it does, you attempt to
get the values of score and timeLeft from the Bundle that you passed in earlier from
onSavelInstanceState. You then assign those values to the properties and restore the
game. If, however, savedInstanceState does not contain a value, you reset the game.

Next, implement the following method below resetGame():

private fun restoreGame() {

val restoredScore = getString(R.string.your_score,
Integer.toString(score))

K

gameScoreTextView.text = restoredScore

val restoredTime = getString(R.string.time_left,
Integer.toString(timelLeft))
timeLeftTextView.text = restoredTime

countDownTimer = object : CountDownTimer((timeLeft % 1000).tolLong(),
countDownInterval) {
override fun onTick(millisUntilFinished: Long) {

timeLeft = millisUntilFinished.toInt() / 1000

val timelLeftString = getString(R.string.time_left,
Integer.toString(timeLeft))
timeLeftTextView.text = timeLeftString

override fun onFinish() {
endGame ()

b
b

countDownTimer.start()
gameStarted = true

}

restoreGame () sets up the TextViews and countDownTimer properties using the values
inserted into the Bundle before the change in orientation.

Run the app and play the game for a few seconds. Then, rotate the device to see what
happens:

Timefighter

Your Score: 8 Time left: 3

TAP ME!

Woohoo! The score and time remaining stayed the same — bug fixed.

You only scratched the surface of debugging in Android Studio. Finding and fixing bugs
is an important part of software development, so it’s essential that you get comfortable
with the tools.

Android Studio contains many debugging tools that are beyond the scope of this
chapter. To find out more, read the Android developer documentation:

Note: Sometimes you aren’t able to fix bugs due to factors beyond your control.
There may be bugs in a third-party library you’re using, or maybe even within
Android itself. If you find yourself in this situation, inform the developers who
maintain that code via their bug reporting channels.

For now, you’re armed with enough tools and techniques to debug potential problems
in your own apps. In the next chapter, you’ll finish up TimeFighter so that it looks and
feels more in place in the Android ecosystem.

Chapter 5: Prettifying the

App

By Darryl Bayliss

Take a moment to congratulate yourself and recognize what you’ve accomplished so
far: You have a working Android app that lets users fight the clock and score as many
points as possible.

You also fixed a few undiscovered bugs and added support for portrait and landscape
mode, regardless of their device. By all accounts, your app is ready to entertain people
for years to come!

h raywenderlich.com 79

There’s one problem though: It’s not visually exciting.

45" oo oo BRI@ T .096% 0814 PM

Timefighter

Your Score: 0 Time left: 60

TAP ME!

= (W <

Nothing special here...

An app that looks visually appealing tends to stick out when compared to similar apps.
While it’s not integral to the functionality of your app, it does give it that “wow!” factor.

In this final chapter for the section, you’ll learn how to:
1. Adjust your app to adhere to the Material Design Guidelines.
2. Add small touches to give your app a polished look and feel.

3. Add a simple animation to your app to give it some life.

Getting started

If you’ve been following along, open your project and keep using it for this chapter. If
not, don’t worry. Locate the projects folder for this chapter and open the TimeFighter
app inside the starter folder.

The first time you open the project, Android Studio takes a few minutes to set up your
environment and update dependencies.

K

With TimeFighter open, run the app and consider some things you can do to improve
the way it looks and feels. Perhaps you can change the color of the app bar or the white
screen? Maybe the button feels a little lifeless when tapped? And why is the app so
silent — maybe it needs sound effects?

The important thing to remember is that you don’t need to do everything. You only need
to make changes that add to the essential elements on the screen. If you add too much,
you run the risk of cluttering the screen and confusing the user.

In the Project navigator, on the left side of Android Studio, open colors.xml; it’s
located in app > res > values. You’ll see something like this:

<resources>
<color name="colorPrimary">#3F51B5</color>
<color name="colorPrimaryDark">#303F9F</color>
<color name="colorAccent">#FF4081</color>
</resources>

colors.xml stores the color values used in your app. Like strings.xml, it’s an excellent
place to store the color-related values and keep them in one location, which makes it
easier to change things later.

To define colors, you use a <color> tag along with a name attribute that you can use as a
reference when it’s compiled into R.java. The reference is available for use in your XML
Layouts and also at runtime in your code.

Within <color>, you assign a hexadecimal representation of the color. You close the tag
using </color>.

With the theory out of the way, you’re ready to update the file. In colors.xml, change
the values to match the following:

<?xml version="1.0" encoding="utf-8"7>
<resources>
<color name="colorPrimary">#0C572A</color>
<color name="colorPrimaryDark">#388E3C</color>
<color name="colorAccent">#8BC34A</color>
<color name="colorBackground">#D3D3D3</color>
</resources>

Are you wondering how this changes the color of the app bar at the top? The answer
lies in styles.xml. This file is located in app > res > values.

K

Open styles.xml and review its contents:

<resources>
<!—— Base application theme. ——>
<style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
<!—— Customize your theme here. ——>

<item name="colorPrimary">@color/colorPrimary</item>
<item name="colorPrimaryDark'">@color/colorPrimaryDark</item>
<item name="colorAccent">@color/colorAccent</item>

</style>

</resources>

Notice the <item> tags. These tags define specific items within your app which adhere
to a particular color. In this case, these colors are the colors you updated in colors.xml.

Note: Your app is adhering to a Style set within this file. This is used to set the
presentation of Views and screens. You can override items that are inherited from
other themes provided by Android or other developers. For more information,
visit: https://developer.android.com/guide/topics/ui/themes.html.

One final tweak! Open activity_main.xml, located in app > res > layout. Switch from

Design to Text, and update ConstraintLayout to change the color of the background,
like so:

<android.support.constraint.ConstraintlLayout
xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:app="http://schemas.android.com/apk/res—-auto"
xmlns:tools="http://schemas.android.com/tools"
android: layout_width="match_parent"
android: layout_height="match_parent"
android:background="@color/colorBackground"
tools:context="com. raywenderlich.timefighter.MainActivity">

You now reference the colorBackground color added in colors.xml.

With that done, run the app and see if you can still recognize it.

] £ 0943
Timefighter

Your Score Time left: 60

TAP ME!

That’s more interesting!

With a few lines of code, you’ve managed to transform the app and make it more
visually appealing.

Animations

Animations give visual emphasis to elements and help direct the users’
attention. When it comes to animation, the most important rule is to use it where and
when it matters — not simply because you can.

One of the most heavily-used components in TimeFighter is the “Hit Me” button —
because that’s what earns the user points. So, adding an animation here makes sense!

In the Project navigator, right-click on res. In the drop-down window, navigate to New
and click Android resource directory.

e T - ot Fie/Class

manifests))) &1 Android Resource File

java Link C++ Project with Gradle
C(:T/i;: Cut 38X Sample Data Directory
com.ra = Copy C | B File
com.ra Copy Path {38C | B Scratch File 38N

generatec Copy Reference {r3cC Directory

res [paste BV

In the New Resource Directory window, click the drop-down button next to Resource

type and change it to anim — which automatically changes the name of the directory —
and click OK.

New Resource Directory

Directory name: | anim
Resource type: anim

Source set: main

Available qualifiers:

@: Network Code

@ Locale

= Layout Direction

[Smallest Screen Width
& Screen Width

[1 Screen Height

4 size

[E] Ratio

Chosen qualifiers:

>>

[= Orientation
8 Ul Mode

© Night Mode
[® Density

[™ Touch Screen

?

Cancel | |

In the Project navigator, you now have a new folder inside res named anim.

Next, you need to create the file defining the animation for your button. Right-click on

anim, navigate to New, and click Animation resource file on the right-most drop-
down.

You’re presented with a window similar to the one you saw when creating the anim

folder. This time though, you need to enter the name of the file. For the File name,
enter bounce, then click OK.

New Resource File

File name: bounce|
Source set: main

Directory name: | anim
Available qualifiers:

@: Network Code

@ Locale

I= Layout Direction

[Smallest Screen Width
[Screen Width

[il Screen Height

[size

Chosen qualifiers:

>>

[Z] Ratio

=) Orientation
18 Ul Mode

@) Night Mode
[® Density

[™ Touch Screen

?

Cancel | [ELS

Android Studio creates the file and automatically opens it for you:

<?xml version="1.0" encoding="utf-8"7>
<set xmlns:android="http://schemas.android.com/apk/res/android">

</set>

Notice the set attribute. This is a container that holds all of the transformations that
occur throughout your animation. You can bundle more than one transformation in the
same animation and have them all run concurrently.

Think of a transformation as something that happens over time. Imagine a dog moving
from the left of the screen to the right: As the dog walks along the screen, his position
changes; he may even grow larger as he moves.

&

This dog is performing two transformations. Moving from left to right and also growing in size!

For this animation, however, you only need one transformation.
Edit bounce.xml to match the following:

<?xml version="1.0" encoding="utf-8"7>
<set xmlns:android="http://schemas.android.com/apk/res/android"
android: fillAfter="true"
android: interpolator="@android:anim/bounce_interpolator">
<scale
android:duration="2000"
android: fromXScale="2.0"
android: fromYScale="2.0"
android:pivotX="50%"
android:pivotY="50%"
android:toXScale="1.0"
android:toYScale="1.0" />
</set>

K

Stepping through the XML to see what’s happening:

<set xmlns:android="http://schemas.android.com/apk/res/android"
android: fillAfter="true"
android:interpolator="@android:anim/bounce_interpolator'>

The set is declared and fillAfter is set to true, which means the animation won’t
reset the View to its original position once it’s complete. Instead, the View remains
wherever it is when the animation ends.

This set is also told to use the bounce_interpolator from Android. Interpolators affect
the rate the entire animation is performed over time, independent of durations set
within the transformations.

Android provides many built-in interpolators. It also lets you create your own if you
don’t find one that suits your needs. For now, the bounce_interpolator included with
Android works nicely.

Time for the next few lines:

<scale
android:duration="2000"
android: fromXScale="2.0"
android: fromYScale="2.0"
android:pivotX="50%"
android:pivotY="50%"
android:toXScale="1.0"
android:toYScale="1.0" />

You declare a scale attribute. This informs the animation to resize the View. You also
declare that scaling occurs over 2000 milliseconds (2 seconds), via the duration
attribute.

In addition, you set the width and height of the View as 2.0, twice the original size
when the animation starts via the fromXScale and fromYScale attributes.

The pivotX and pivotY attributes specify the center point where the animation occurs.
In this case, it occurs from the center of the View, expressed in percentages as 50%:
halfway across the X-axis and halfway across the Y-axis.

Finally, you set the size of the View at the end of the animation as 1.0, via the toXScale
and toYScale attributes. This sets the View back to its original size.

In summary, the animation you defined will:
» Scale the animated View to twice its size.

» Shrink it back to its original size.

K

* Do this over the space of two seconds.

» Using a bouncing interpolator.

Note: If you want to know more about animation resources and interpolators on
Android, review the Android Developer documentation (

) for an
in-depth review.

That’s it for the bounce animation!

Open MainActivity.kt and modify the tapMeButton.setOnClickListener callback in
onCreate() to use this animation:

tapMeButton.setOnClickListener { v —>
val bounceAnimation = AnimationUtils. loadAnimation(this,
R.anim.bounce);
v.startAnimation(bounceAnimation)
incrementScore()

}

Every time you click the button, tapMeButton.setOnClickListener loads the bounce
animation inside anim and instructs the button to use that animation. Run the app and
click the button.

Making an app if fun, and at some point you need to let the users know who created it.
But at the same time, you don’t want to distract your users while they’re playing your
game. So what can you do? One option is to use a Dialog.

A Dialog is an excellent way to provide a snippet of information without moving away
from the main content on the screen. Dialogs come in all shapes and sizes, but in this
case, you want to let your users know about the creator of the app and what version of
TimeFighter they’re running.

An easy way to do that is to set up a button in the top bar. But first, you need to define a
menu.

In the Project navigator, locate res. Right-click on the folder and select Android
resource directory. In the new window, click the resource type drop-down and change
it to menu. Then, click OK.

K

[NON] New Resource Directory
Directory name: menu

Resource type: menu

(O o

Source set: main

Available qualifiers: Chosen qualifiers:
@: Network Code

@ Locale

= Layout Direction

[Smallest Screen Width

= Screen Width

[screen Height

[size <<
[Z] Ratio

[&3 Orientation

[H UI Mode

@) Night Mode

[® Density

[™ Touch Screen

Nothing to show
>>

Right-click on the newly created menu resource folder. In the pop-up menu, hover over
New, and then click on Menu resource file.

New 4 "¢ Kotlin File/Class [
ap))) Menu resource file
“ % Link C++ Project with Gradle .
Sample Data Directory Fa
K cut x File =
Lsts B Copy 32C = Scratch File %8N p:
Copy Path r38C Directory ;g‘

In the New Resource File window, enter the file name as menu and click OK:

[JeX J New Resource File
File name: menu
Source set: main

Directory name: | menu

Available qualifiers: Chosen qualifiers:
©: Network Code

@ Locale

[= Layout Direction

[Smallest Screen Width

[= Screen Width

|1 Screen Height

4 size <<
7] Ratio

{3 Orientation

[E Ul Mode

@) Night Mode

[® Density

[™ Touch Screen

Nothing to show
>>

Android Studio changes over to the Layout window and shows you a similar setup to
what you’ve seen when editing Layout files:

Palette Q & —

&] Cast Button h.4
= Menu ltem

Q_ Search Item

«® Switch ltem

= Menu P 0500
«® Group

Component Tree o —

= menu

Note: Android Studio may open the Text editor. If this happens, click Design at
the bottom of the Layout window.

Here, you have the usual windows. The Palette in the top-left changes to show only
menu-specific items, and the Component Tree gives you an overview of the hierarchy
for your menu.

You want a single item in your menu. To do that, move your cursor over to the Menu
Item button in the Palette window, and click and drag from the Menu Item and onto
your Layout.

You’ll end up with something like this:

So far, so good. Your newly-placed menu item is now highlighted, and the Attributes
window is shown on the right side. Time to edit some of these attributes!

First, set the id for the menu item and name it about_item. Next, move on to the title
attribute and name your menu item About.

You now need to decide what icon to use for the menu item. Android includes plenty of
embedded images from which to choose, so you can use one of those.

K

Click the small dots next to the icon text field. They appear like so:

Attributes Q &8 —
item

id about_item

title About

icon @android:drawa

showAsAction always

visible =
enabled (=
checkable =

You’re presented with the resources window.

[JOX) Resources

Q

Add new resource ¥

Drawable ~ Project

Color

ic_launcher ic_launcher_round

» android

» Theme attributes

No Preview

Cancel

This window displays the resources available for use within your app, whether they
come from Android or your own custom resources. The window shows both images — or
drawables, as Android refers to them — or colors.

K

In the top-left of the Resources window is a search bar. Click in the search bar and type
ic_ menu_info.

As you type, the list of resources filters down to match any resources that contain the
characters you enetered. In this case, there’s only one.

[JOX) Resources

Add new resource v

Q ic_menu_info

Drawable * Project
Name: ic_menu_info_details hdpi-v4 v

¥ android

Color
PNG]

details

» Theme attributes

@android:drawable/ic_menu_info_details
= ic_menu_info_details.png

Click the resource under the Android drop-down to select it, and then click OK. The
Resource window closes and takes you back to the Layout window. The icon text field is

populated with the resource you chose.

icon @android:drawable/ic_menu_info.

Finally, to make sure the button is always visible, you need to set the showAsAction
attribute. Click the small dots next to showAsAction. In the dialog that appears, check
Always, and then click OK.

O showAsAction

| never

(] ifRoom

always

[] withText

|| collapseActionView

showAsAction affects how your menu item is presented and can have multiple choices
depending on the number of items your menu contains and the screen size of your
device. You want the menu item to always show up regardless of the circumstances. To
do that, you need to set the value to Always.

Looking good! Now for some Kotlin code.
In MainActivity.kt, add the following method below onDestroy():

override fun onCreateOptionsMenu(menu: Menu): Boolean {
// Inflate the menu; this adds items to the action bar if it is
present.
super.onCreateOptionsMenu(menu)
menuInflater.inflate(R.menu.menu, menu)
return true

}

This overrides the Activity callback when it attempts to create the menu. You make a
call to super to give any superclasses of your Activity a chance to set themselves up.
You then use the Activity’s menuInflater to programmatically set up your menu layout
for the Activity. Finally, you return true to let the Activity know that the menu is set up.

Below onCreateOptionsMenu(menu: Menu), add this method:

override fun onOptionsItemSelected(item: MenuIltem): Boolean {
if (item.itemId == R.id.about_item) {
showInfo()

return true

}

K

This method is called whenever a user selects a menu item. You check to see if the ID of
the selected menu item is equal to the ID of the item you set up earlier; if so, you call
showInfo().Once again, you return true to let the Activity know that the event was
processed.

Nearly there, just a few more lines!

You still need to create showInfo().Add the following method to MainActivity.kt,
anywhere inside of the class. aon’t worry about editor errors; you’ll work on that next.

private fun showInfo() {
val dialogTitle = getString(R.string.about_title,
BuildConfig.VERSION_NAME)
val dialogMessage = getString(R.string.about_message)

val builder = AlertDialog.Builder(this)
builder.setTitle(dialogTitle)
builder.setMessage(dialogMessage)
builder.create().show()

}

showInfo() handles the setting up of a dialog View for you. It creates two strings to use
in the dialog, one for the title and one for the message.

These strings are created using a mixture of the strings stored in strings.xml and
strings generated when your app is built. In this case, this is the VERSION_NAME of
your app. The version name is already available, and you’ll set up the other strings you
need in strings.xml in a moment.

Next, you create an AlertDialog.Builder and pass in a Context instance to let the
Dialog know where to appear. You pass in the title and message, create the Dialog, and
finally display it.

Note: When you add val builder = AlertDialog.Builder(this), Android Studio
offers to auto-import a library for you, and it offers several options. Be sure to
select the Android Support Library version of AlertDialog:
android.support.v7.app.AlertDialog.

Open strings.xml and add the following strings, substituting your name in
about_message:

<string name="about_title">Timefighter %s</string>
<string name="about_message">Created by YOUR NAME HERE</string>

Finally, run the app and check out the new menu sitting in the top-right of the screen.
Tap the info button in the menu, and the dialog shows up in the middle of the screen.

45° ¢ ool Ne 7~ .490% @ 8:02 PM N©@ = .491% @ 8:04 PM
Timefighter ©)
Your Score: 0 Time left: 60
Timefighter 1.0
Created by Darryl Bayliss
TAP ME! yParmyiEay
= - &

Fantastic! You now have a place for people to find out what version of your app they’re
using and who created it. Well done.

Where to go from here?

Congratulations on completing the first section of the book. You learned a lot over the
last few chapters, and you now know how to create a simple game.

In the next section, you’ll stop working on TimeFighter and move on to a different app
that builds upon the skills and concepts you’ve learned in this first section.

K

We hope you enjoyed this sample of Android Apprentice!

If you did, be sure to check out the full book, which contains the following chapters:

1. Getting Set Up with Android Studio: To begin creating that killer Android App,
you’ll need some guidance on how to install the tools you’ll need as a young
apprentice. Android development takes place inside Android Studio, a customized
IDE based on Intelli] that gives you a powerful set of tools to work with.

2. Layouts: If bricks and mortar are the foundation of a sturdy building, then Layouts
are the Android equivalent of a sturdy app. Layouts are incredibly flexible and let
you define how your user interface is presented on the device to the user.

3. Activities: Android apps are built around a set of screens that have a specific
purpose. Each screen you see in an app is known as an Activity. An Activity is built
around a single task that you want your user to perform.

4. Debugging: In the previous two chapters, you focused on developing TimeFighter
into a fully-fledged app. In this chapter, you’ll focus on how to debug your app
when it begins to exhibit bugs.

5. Prettifying the App: In this final chapter, you’ll learn how to adjust your app to
adhere to the Material Design Guidelines, how to add some small touches to give
your app that "polished" feeling, and how to add a simple animation to your app to
give it some life.

6. Creating a New Project: In the previous section, you had a starter project to begin
building your app. But in this section, you’re going to create your own project from
scratch! You’ll go through the steps and choices given to you to ensure your project
is set up right from the very start.

10.

11.

12.

13.

14.

RecyclerViews: In Android development, the simplest way to implement lists in
your app is to use a class named RecyclerView. You’ll how to get started with
RecyclerView, how to set up a RecyclerView Adapter to populate your list with data,
and how to set up a ViewHolder to handle the layout of each item in your list.

SharedPreferences: In this chapter, you’ll add functionality to ListMaker to create,
save, and delete lists. You’ll learn what SharedPreferences are and how you can use
them to save and retrieve user data.

Communicating Between Activities: As your app gets more complex, trying to
cram more visual elements into a single screen becomes difficult, and can make
your app confusing for users. In this chapter, you’ll learn how to create separate
Activites, how to communicate between Activities using an Intent, and how to pass
data between Activities.

Completing the Detail View: In this chapter, you’re going to build up the Activity
you created in the previous chapter with familiar components such as a
RecyclerView to display the list, and add a FloatingActionButton to add tasks to the
list. You’ll also learn how to communicate back to the previous Activity using an
Intent.

Using Fragments to Expand UI: When it comes to coding an appealing user
interface that adapts across all Android devices with varying screen sizes, things
can get tricky! Although you won’t be building an app for a fridge just yet (give it
time), in this chapter you’ll learn what Fragments are and how they work with
Activities and how to split up Activities into Fragments.

Material Design: Material Design is a design language that aims to standardize
how a user interacts with an app. This ranges from everything to button clicks, to
widget presentation and positioning, even to animation within the app. In this
chapter, you’ll update ListMaker so it adopts some Material Design principles.

Creating a Map-Based App: Have you ever been on a road trip and wanted to
makes notes about places you’ve visited? Or needed to warn your future self about
some heartburn-inducing greasy food from a roadside diner? If so, then you’re in
luck! You’re about to build PlaceBook, an app that meets all of those needs by
letting you bookmark and make notes using a map-based interface.

User Location & Permissions: In this chapter, you’ll tighten up the map
experience by automatically centering the map on the user’s location at startup,
and allowing the user to recenter the map to their current location at any time.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Google Places: Before you can achieve your ultimate goal of allowing users to
bookmark places, you need to let them identify existing places on the map. In this
chapter, you'll learn how to identify when a user taps on a place and use the Google
Places API to retrieve detailed information about the place.

Saving Bookmarks with Room: Now that the user can tap on places to get an info
window pop-up, it’s time to give them a way to bookmark and edit a place. You’ll
learn about the Room Persistence Library and how it fits into the overall Android
Component Architecture.

Detail Activity: In this chapter you'll add the ability to edit bookmarks. This will
involve creating a new activity to display the bookmark details with editable fields.

Navigation & Photos: Currently, the only way to find an existing bookmark is to
locate its pin on the map. In this chapter, you’ll add the ability to navigate directly
to bookmarks, and you’ll replace the photo for a bookmark.

Finishing Touches: In this chapter you’ll add some finishing touches that improve
both the look and usability of the PlaceBook app. Even though PlaceBook is
perfectly functional as-is, it’s often the little touches that make an app go from
good to great.

Networking: In this section, you’re going to use many of the skills you’ve already
learned and dive into some more advanced areas of Android development. You’ll
build a full-featured Podcast manager and player app named PodPlay. This app will
allow searching and subscribing to podcasts from iTunes and provide a playback
interface with speed controls.

Finding Podcasts: Creating a search interface can be as simple as adding a text
view, responding to the user entering text, and populating a RecyclerView with the
results. While this method works fine, the Android SDK provides a built-in search
feature that helps future-proof your apps.

Podcast Details: Now that the user can find their favorite podcasts, you’re ready to
add a podcast detail screen. In this chapter, you’ll design and build the podcast
detail fragment, expand on the app architecture, and add a podcast detail fragment.

Podcast Episodes: Until this point, you’ve only dealt with the top-level podcast
details. Now it’s time to dive deeper into the podcast episode details, and that
involves loading and parsing the RSS feeds.

24.

25.

26.

27.

28.

29.

30.

31.

Podcast Subscriptions, Part 1: By giving users the ability to search for podcasts
and displaying the podcast episodes, you made great progress in the development
of the podcast app. In this section, you’ll add the ability to subscribe to favorite
podcasts.

Podcast Subscriptions, Part 2: Now that the user can subscribe to podcasts, it’s
helpful to notify them when new episodes are available. In this chapter, you’ll
update the app to periodically check for new episodes in the background and post a
notification if any are found.

Podcast Playback: So far, you’ve built a decent podcast management app — too
bad there’s no way to listen to content. In this chapter, you’ll learn how to build a
media player that plays audio and video podcasts, and integrates into the Android
ecosystem.

Episode Player: In the last chapter, you succeeded in adding audio playback to the
app, but you stopped short of adding any built-in playback features. In this final
chapter of this section, you’ll finish up the PodPlay app by adding a full playback
interface and support for videos.

Android Fragmentation & Libraries: In a perfect world, every Android device
would run a single version of Android and app development would be easy. Sadly,
the world isn’t perfect. As of May 2017, there were two billion active Android
devices around the world, all running various versions and flavors of Android. This
chapter explores the history of Android versions, and how developers can target as
many versions of Android as possible.

Keeping Your App Up to Date: The more you commit to your app, the more value
your users will see in the product. Keeping your app up-to-date is an incentive to
growing that important group of users. Publishing an app is an achievement, but
supporting an app over the years to come is an even greater achievement.

Preparing for Release: So you finally built that app you’ve been dreaming about.
Now it’s time to share it with the world! But where do you start? Although this
chapter will focus primarily on preparing the app for the Google Play store, most of
the steps will apply regardless of the publishing platform.

Testing & Publishing: In this chapter, you’ll complete the app publishing process
and discover additional ways to distribute your app. You’ll also go through the
Alpha and Beta testing process to make sure your app is ready to share with the
world.

You can find the book on the raywenderlich.com store, here: https://
store.raywenderlich.com/products/android-apprentice

We hope you enjoy the book!

— Darryl, Tom, Namrata, Faud and the Android Apprentice team

Learn Android programming with Kotlin!

Learning Android programming can be challenging. Sure, there is plenty of documentation, but
the tools and libraries available today for Android are easily overwhelming for newcomers to
Android and Kaotlin.

Android Apprentice takes a different approach. From building a simple first app, all the way to a
fully-featured podcast player app, this book walks you step-by-step, building on basic concepts
to advanced techniques so you can build amazing apps worthy of the Google Play Store!

Who This Book Is For

This book is for anyone interested in writing mobile apps for Android. Though no previous mobile
experience is necessary, this book is also a great resource for iPhone developers transitioning
from iOS.

Topics Covered in Android Apprentice:

Getting Started: Learn how to set up Android Studio and the Android Emulator.
Layouts: Create layouts that can be used for both Activities and Fragments
Debugging: No one’s perfect! Learn how to dig down and troubleshoot bugs in your apps.

Communication: Design separate Activities and communicate and send data between them using
Intents.

Scrolling Layouts: Learn how to use Recycler Views to make efficient, reusable views that scroll
fluidly at a touch.

Google Places: Integrate location APIs to bring the magic of maps into your Android apps.

vVVY VY YVYVY

Networking: Learn how to access resources on the internet and handle networked responses.

» Material Design: Make sure your apps conform to modern best practices by using Google’s
y standards of Material Design

» And much, much more!

One thing you can count on: after reading this book, you'll be prepared to write feature-rich apps from
scratch and go all the way to submiting them to the Google Play Store!

About the Tutorial Team

The Tutorial Team is a group of app developers and authors who write tutorials at the popular website
raywenderlich.com. We take pride in making sure each tutorial we write holds to the highest standards
of quality. We want our tutorials to be well written, easy to follow, and fun.

If you’ve enjoyed the tutorials we’ve written in the past, you're in
for a treat. The tutorials we’ve written for this book are some of our
best yet — and this book contains detailed technical knowledge
you simply won’t be able to find anywhere else.

	About This Book Sample
	Book License
	Chapter 1: Setting Up Android Studio
	Getting started
	Your first Android project
	Android Studio
	Creating an Android virtual device
	Setting up an Android device
	Running the app
	Installing new versions of Android studio
	Where to go from here?

	Chapter 2: Layouts
	Getting started
	These are not the SDKs you’re looking for
	The Visual editor
	Component tree view
	Positioning your views
	Adding rules to your position
	Finishing the screen
	Where to go from here?

	Chapter 3: Activities
	Getting started
	Exploring Activities
	Hooking up Views
	Managing strings in your app
	Progressing the game
	Starting the game
	Ending the game
	Where to go from here?

	Chapter 4: Debugging
	Getting started
	Add some logging
	Orientation changes
	Breakpoints
	Restarting the game
	Where to go from here?

	Chapter 5: Prettifying the App
	Getting started
	Changing the app bar color
	Animations
	Adding a Dialog
	Where to go from here?

	Where to Go From Here?

