

Server Side

Swift

with

Vapor

By Tim Condon, Tanner Nelson, Jonas Schwartz & Logan Wright

About This Book Sample

Whether you’re looking to create a backend for your iOS app, or want to create fully-featured web apps, Vapor is the perfect platform for you.

The Server Side Swift with Vapor book starts with the basics of web development and introduces the basics of Vapor; it then walks you through creating APIs and web backends; creating and configuring databases; deploying to Heroku, AWS, or Docker; testing your creations and more!

This book sample contains Chapter 2 where you’ll start by installing the Vapor Toolbox, then use it to build and run your first project. It continues by teaching you about routing, accepting data and returning JSON.

We hope that this hands-on look inside the book will give you a good idea of what's available in the full version and show you why Vapor is an exciting proposition for your server-side code.

The full book is available for purchase at:

	
https://store.raywenderlich.com/products/server-side-swift-with-vapor

Enjoy!

— Tim, Tanner, Jonas, Logan, and the Server Side Swift with Vapor team

Licensing

Server Side Swift with Vapor

By Tim Condon, Tanner Nelson, Jonas Schwartz & Logan Wright

Copyright ©2019 Razeware LLC.

Notice of Rights

All rights reserved. No part of this book or corresponding materials (such as text, images, or source code) may be reproduced or distributed by any means without prior written permission of the copyright owner.

Notice of Liability

This book and all corresponding materials (such as source code) are provided on an “as is” basis, without warranty of any kind, express of implied, including but not limited to the warranties of merchantability, fitness for a particular purpose, and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in action of contract, tort or otherwise, arising from, out of or in connection with the software or the use of other dealing in the software.

Trademarks

All trademarks and registered trademarks appearing in this book are the property of their own respective owners.

About the Authors

[image:]

Tim Condon is a software engineer who has worked in most areas of the industry, including security, back-end, front-end and mobile! Having previously worked for the BBC, he is now the founder of Broken Hands, specializing in Vapor training and consultancy. On Twitter he can be found sporadically tweeting @0xTim. You can find more about him at www.brokenhands.io.

[image:]

Jonas Schwartz had a long career as a backend and server operations developer, before he teamed up with Tanner and Logan in 2017. He came onboard after talks about building a cloud platform. Since then, his focus has been on making hosting easy and more scalable for Vapor applications.

[image:]

Logan Wright began his career as an iOS Developer working on many categories of applications from navigation, to customized bluetooth communication protocols. Always a major supporter of OSS, Logan met Tanner through the Vapor project. Eventually, that grew into a full-time position and the community as we know it today.

[image:]

Tanner Wayne Nelson is an American software engineer based in New York City. He started programming in elementary school and went on to study Computer Science at New York University. Tanner created Vapor in 2016 and now works full time maintaining the core framework and the dozens of packages around it.

About the Editors

[image:]

Richard Critz did double duty as editor and tech editor for this book. He is the iOS Team Lead at raywenderlich.com and has been doing software professionally for nearly 40 years, working on products as diverse as CNC machinery, network infrastructure, and operating systems. He discovered the joys of working with iOS beginning with iOS 6. Yes, he dates back to punch cards and paper tape. He's a dinosaur; just ask his kids. On Twitter, while being mainly read-only, he can be found @rcritz. The rest of his professional life can be found at www.rwcfoto.com.

[image:]

Darren Ferguson is the final pass editor for this book. He's an experienced software developer and works for M.C. Dean, Inc, a systems integration provider from North Virginia. When he's not coding, you'll find him enjoying EPL Football, traveling as much as possible and spending time with his wife and daughter. Find Darren on Twitter at @darren102.

Book License

By purchasing Server Side Swift with Vapor, you have the following license:

	
You are allowed to use and/or modify the source code in Server Side Swift with Vapor in as many apps as you want, with no attribution required.

	
You are allowed to use and/or modify all art, images and designs that are included in Server Side Swift with Vapor in as many apps as you want, but must include this attribution line somewhere inside your app: “Artwork/images/designs: from Server Side Swift with Vapor, available at www.raywenderlich.com”.

	
The source code included in Server Side Swift with Vapor is for your personal use only. You are NOT allowed to distribute or sell the source code in Server Side Swift with Vapor without prior authorization.

	
This book is for your personal use only. You are NOT allowed to sell this book without prior authorization, or distribute it to friends, coworkers or students; they would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties of their respective owners.

What You Need

To follow along with this book, you’ll need the following:

	
Swift 4.2: Vapor 3 requires Swift 4.2 minimum in both Xcode and from the command line.

	
Xcode 10 or later: Xcode is the main development tool for writing code in Swift. You need Xcode 10 at a minimum, since that version includes Swift 4.2. You can download the latest version of Xcode for free from the Mac App Store.

If you haven’t installed the latest version of Xcode, be sure to do that before continuing with the book. The code covered in this book depends on Swift 4.2 and Xcode 10 — you may get lost if you try to work with an older version.

This book provides the building blocks for developers who wish to use Vapor to create server-side Swift applications. It shows you how to take the familiar type-safe, compiler-driven world of Swift you know from iOS and use it on the server.

The only prerequisites for this book are an intermediate understanding of Swift and iOS development. If you’ve worked through our classic beginner books — Swift Apprentice https://store.raywenderlich.com/products/swift-apprentice and iOS Apprentice https://store.raywenderlich.com/products/ios-apprentice — or have similar development experience, you’re ready to read this book.

As you work through the book, you’ll develop a server-side app called TIL — Today I Learned — for recording and categorizing acronyms. You’ll first build a REST API to support iOS and other client apps. Then, you’ll build a web site with direct access to the data and protect it all with authentication.

About this book

This book provides the building blocks for developers who wish to use Vapor to create server-side Swift applications. It shows you how to take the familiar type-safe, compiler-driven world of Swift you know from iOS and use it on the server.

The only prerequisites for this book are an intermediate understanding of Swift and iOS development. If you’ve worked through our classic beginner books — Swift Apprentice https://store.raywenderlich.com/products/swift-apprentice and iOS Apprentice https://store.raywenderlich.com/products/ios-apprentice — or have similar development experience, you’re ready to read this book.

As you work through the book, you’ll develop a server-side app called TIL — Today I Learned — for recording and categorizing acronyms. You’ll first build a REST API to support iOS and other client apps. Then, you’ll build a web site with direct access to the data and protect it all with authentication.

Chapter 2: Hello Vapor

Beginning a project using a new technology can be daunting. Vapor makes it easy to get started. It even provides handy scripts to make sure your computer is configured correctly.

In this chapter, you’ll start by installing the Vapor Toolbox, then use it to build and run your first project. You’ll finish by learning about routing, accepting data and returning JSON.

Vapor Toolbox

The Vapor Toolbox is a command line interface (CLI) tool you use when developing Vapor apps. It provides several features, including:

	
Creating new apps from templates.

	
Building and running projects using the Swift toolchain.

	
Generating Xcode projects.

	
Deploying projects with Vapor Cloud.

Before you can install the toolbox, you need to ensure your system is compatible. To do this, you run the Vapor Check script, which verifies you have the necessary version of Swift installed.

Open Terminal and execute the following command:

eval "$(curl -sL check.vapor.sh)"

This command also works on Linux.

[image:]

If you receive errors when running this script, you’ll need to install Swift. On macOS, simply install Xcode from the Mac App Store. On Linux, use APT to install it as described below.

Vapor 3 requires Swift 4.1 or 4.2, both in Xcode and from the command line.

Installing on macOS

Vapor uses Homebrew to install the Toolbox.

If you don’t have Homebrew installed, visit https://brew.sh and run the installation command.

In Terminal, run the following commands:

brew tap vapor/tap
brew install vapor/tap/vapor

Installing on Linux

This book focuses primarily on using Xcode and macOS for developing your apps. However, everything you build with Vapor will work on versions of Linux that Swift supports. At the time of writing, these are Ubuntu 14.04, Ubuntu 16.04 and Ubuntu 18.04. The Vapor Toolbox works in exactly the same way, with the exception that you can’t use Xcode projects on Linux.

You install Vapor on Linux using the Vapor APT repository. Vapor maintains an open source APT repo at https://github.com/vapor/apt, which serves the same purpose as Vapor’s Brew tap. It allows for easy installation of packages and manages all the dependencies for you. When you install Vapor, it also installs Swift for you.

This book uses Ubuntu 16.04 throughout when referring to Linux, but the other supported versions of Ubuntu should work in exactly the same way.

To use the Vapor APT repo, add it to your repository list. Enter the following at a shell prompt:

eval "$(curl -sL https://apt.vapor.sh)"

Note: You may need to install curl first before you can run this command if you are starting with a fresh Ubuntu image. Run sudo apt-get install curl -y to do so.

Once this completes, you can install the Toolbox (and Swift):

sudo apt-get install vapor -y

When this completes, you should be able to run the check script from above and get a successful result:

[image:]

Building your first app

Setting up a Vapor project can seem complicated at first as there are a number of required files and directories. To help with this, the Toolbox can create a new project from a template. The default template is a simple API template, but it also has templates for web sites and authentication. You can even create your own templates.

First, create a new directory in your home directory or somewhere sensible to work on your Vapor projects. For example, enter the following commands in Terminal:

mkdir ~/vapor
cd ~/vapor

This creates a new directory in your home folder called vapor and navigates you there. Next, create your project with:

vapor new HelloVapor

You should see the following:

[image:]

To build and start your app, run:

1
cd HelloVapor
2
vapor build
3
vapor run

Here’s what this does:

	
cd is the “Change Directory” command and takes you into the project directory.

	
This builds the app. It can take some time the first time since it must fetch all the dependencies.

	
This runs the app. If the macOS Application Firewall pops up asking you to allow network connections, click Allow.

[image:]

The template has a predefined route, so open your browser and visit http://localhost:8080/hello and see the response!

[image:]

Swift Package Manager

Vapor Toolbox uses Swift Package Manager, or SPM, — a dependency management system similar to Cocoapods on iOS — to configure and build Vapor apps. Open your project directory and look at the structure. On macOS in Terminal, enter:

open .
[image:]

Notice there’s no Xcode project in your template even though you’ve built and run the app. This is deliberate. In fact, the project file is explicitly excluded from source control using the .gitignore file. When using SPM, Xcode projects are discardable and regenerated whenever you make project changes.

An SPM project is defined in the Package.swift manifest file. It declares targets, dependencies and how they link together. The project layout is also different from a traditional Xcode project. There is a Tests directory for tests. There is a Sources directory for source files. Each module defined in your manifest has its own directory inside Sources. Your sample app has an App module and a Run module, so Sources contains an App directory and a Run directory.

Inside the Run directory, there’s a single main.swift file. This is the entry point required by all Swift apps.

On iOS this is usually synthesized with a @UIApplicationMain attribute on the AppDelegate.

The template contains everything you need to set up your app and you shouldn’t need to change main.swift or the Run module. Your code lives in App or any other modules you define.

Creating your own routes

This section, as does most of the book, uses Xcode. If you’re developing on Linux, use your favorite editor, then use the commands vapor build and vapor run to build and run your app.

Now that you’ve made your first app, it’s time to see how easy it is to add new routes with Vapor. If the Vapor app is still running, stop it by pressing Control-C in Terminal. Next enter:

vapor xcode -y

This generates an Xcode project and opens it. Open routes.swift in Sources/App. You’ll see the route you visited above. To create another route, add the following after the router.get("hello") closure:

router.get("hello", "vapor") { req -> String in
 return "Hello Vapor!"
}

Here’s what this does:

	
Add a new route to handle a GET request. Each parameter to router.get is a path component in the URL. This route is invoked when a user enters http://localhost:8080/hello/vapor as the URL.

	
Supply a closure to run when this route is invoked. The closure receives a Request object; you’ll learn more about these later.

	
Return a string as the result for this route.

In the Xcode toolbar, select the Run scheme and choose My Mac as the device.

[image:]

Build and run. In your browser, visit http://localhost:8080/hello/vapor.

[image:]

Important note: In Xcode 10 and Swift 4.2 you may see two warnings. The first is a project warning saying the project can be converted to Swift 4.2. The second is a deprecation warning in the NIOOpenSSL package. You can safely ignore these.

What if you want to say hello to anyone who visits your app? Adding every name in the world would be quite impractical! There must be a better way. There is and Vapor makes it easy.

Add a new route that says hello to whomever visits. For example, if your name is Tim, you’ll visit the app using the URL http://localhost:8080/hello/Tim and it says “Hello, Tim!”. Add the following after the code you just entered:

// 1
router.get("hello", String.parameter) { req -> String in
 //2
 let name = try req.parameters.next(String.self)
 // 3
 return "Hello, \(name)!"
}

Here’s the play-by-play:

	
Use String.parameter to specify that the second parameter can be any String.

	
Extract the user’s name, which is passed in the Request object.

	
Use the name to return your greeting.

Build and run. In your browser, visit http://localhost:8080/hello/Tim. Try replacing Tim with some other values.

[image:]

Accepting data

Most web apps must accept data. A common example is user login. To do this, a client sends a POST request with a JSON body which the app must decode and process. To learn more about POST requests and how they work, see Chapter 3, “HTTP Basics.”

Vapor 3 makes decoding data easy thanks to its strong integration with Swift 4’s Codable. You give Vapor a Codable struct that matches your expected data and Vapor does the rest. Create a POST request to see how this works.

This book uses the RESTed app, available as a free download from the Mac App Store. If you like, you may use another REST client to test your APIs.

Set up the request as follows:

	
URL: http://localhost:8080/info

	
Method: POST

	
Add a single parameter called name. Use your name as the value.

	
Select JSON-encoded as the request type. This ensures that the data is sent as JSON and that the Content-Type header is set to application/json. If you are using a different client you may need to set this manually.

Your request should look similar to the following:

[image:]

Go back to Xcode, open routes.swift and add the following to the end of the file to create a struct called InfoData to represent this request:

struct InfoData: Content {
 let name: String
}

This struct conforms to Content which is Vapor’s wrapper around Codable. Vapor uses Content to extract the request data, whether it’s the default JSON-encoded or form URL-encoded. InfoData contains the single parameter name.

Next add a new route after the router.get("hello", "vapor") closure:

router.post(InfoData.self, at: "info") { req, data -> String in
 return "Hello \(data.name)!"
}

Here’s what this does:

	
Add a new route handler to handle a POST request for the URL http://localhost:8080/info. This route handler returns a String. The route handler accepts a Content type as the first parameter and any path parameters after the at: parameter name. The route handler decodes the data and passes it to the closure as the second parameter.

	
Return the string by pulling the name out of the data variable.

Build and run the app. Send the request from RESTed and you’ll see the response come back:

[image:]

This may seem like a lot of boilerplate to extract a single parameter from JSON. However, Codable scales up and allows you to decode complex, nested JSON objects with multiple types in a single line.

Returning JSON

Vapor also makes it easy to return JSON in your route handlers. This is a common need when your app provides an API service. For example, a Vapor app that processes requests from an iOS app needs to send JSON responses. Vapor again uses Content to encode the response as JSON.

Open routes.swift and add the following struct, called InfoResponse, to the end of the file to return the incoming request:

struct InfoResponse: Content {
 let request: InfoData
}

This struct conforms to Content and contains a property for the request.

Next, replace router.post(InfoData.self, at: "info") with the following:

// 1
router.post(InfoData.self, at: "info") {
 req, data -> InfoResponse in
 // 2
 return InfoResponse(request: data)
}

Here’s what changed:

	
The route handler now returns the new InfoResponse type.

	
Construct a new InfoResponse type using the decoded request.

Build and run the app. Send the same request from RESTed. You’ll see a JSON response containing your original request data:

[image:]

Troubleshooting Vapor

Throughout the course of this book, and in any future Vapor apps, you may encounter errors in your projects. There are a number of steps to take to troubleshoot any issues.

Regenerate your project

First and foremost, you should regenerate your Xcode project. In Terminal, type:

vapor xcode -y

This regenerates your project like the first time you created the Xcode project. This can fix issues such as missing files or project configuration errors.

Update your dependencies

Another scenario you may encounter is hitting a bug in Vapor or another dependency you use. Make sure you are on the latest package version of any dependencies to see if the update fixes the issue. In Terminal, type:

vapor update

This uses the underlying swift package update command to pull down any updates to your dependencies and use the latest releases you support in Package.swift. Note that while packages are in the beta or release candidate stages, there may be breaking changes between updates.

Clean and rebuild

Finally, if you are still having issues, you can use the software equivalent of “turn it off and on again”. In Xcode, use Command-Option-Shift-K to clean the build folder. You may also need to remove the build products created by the Vapor Toolbox. To do this, enter the following in Terminal:

rm -rf .build

This removes all build artifacts and your dependencies. You may also need to clear your derived data for the Xcode project as well. The “nuclear” option involves:

	
Remove the .build directory to remove any build artifacts.

	
Remove your .xcodeproj to delete the Xcode project and any misconfigurations.

	
Remove Package.resolved to ensure you get the latest dependencies next time you build.

	
Remove derived data to clear extra Xcode build artifacts.

Vapor Discord

The above steps usually fix most issues you might encounter that aren’t caused by your code. If all else fails, head to Vapor’s Discord server. There are thousands of developers discussing Vapor, its changes and helping people with issues. Click the Join Chat button on Vapor’s web site: https://vapor.codes.

Where to go from here?

This chapter provides an overview of how to get started with Vapor and how to create basic routes. The first two sections of this book show you how to build a complex app, including an API, a website, and authentication in both parts. As you progress through them, you’ll learn how to use core Vapor concepts, such as futures, Fluent and Leaf. By the end of section 2, you’ll have a solid foundation on which to build any server-side Swift app in Vapor.

Where to Go From Here?

We hope you enjoyed this sample of Server Side Swift with Vapor!

If you did, be sure to check out the full book, which contains the following chapters:

	
Chapter 1: Introduction: Get a quick overview of the history of the Vapor project and how the book is structured.

	
Chapter 2: Hello, Vapor!: In this chapter, you’ll start by installing the Vapor Toolbox, then use it to build and run your first project. You’ll finish by learning about routing, accepting data and returning JSON.

	
Chapter 3: HTTP Basics: Before you begin your journey with Vapor, you’ll first review the fundamentals of how the web and HTTP operate, including its methods and most common response codes. You’ll also learn how Vapor differs from other Swift frameworks, its benefits, and how it can augment your web development experience.

	
Chapter 4: Async: In this chapter, you’ll learn about asynchronous and non-blocking architectures. You’ll discover Vapor’s approach to these architectures and how to use them. Finally, the chapter provides a small overview of SwiftNIO, a core technology used by Vapor.

	
Chapter 5: Fluent & Persisting Models: This chapter explains how to use Fluent to save data in Vapor applications. Fluent is Vapor’s ORM or object relational mapping tool. It’s an abstraction layer between the Vapor application and the database, and it’s designed to make working with databases easier.

	
Chapter 6: Configuring a Database: Databases allow you to persist data in your applications. In this chapter you’ll learn how to configure your Vapor application to integrate with the database of your choice. Currently Vapor only has support for releational (SQL) databases but this will change in the future.

	
Chapter 7: CRUD Database Operations: This chapter concentrates on how to interact with models in the database. You’ll learn about CRUD (Create, Retrieve, Update, Delete) operations and how they relate to REST APIs. You’ll also see how to leverage Fluent to perform complex queries on your models.

	
Chapter 8: Controllers: In previous chapters, you wrote all the route handlers in one file. This isn’t sustainable for large projects as the file quickly becomes too big and cluttered. This chapter introduces the concept of controllers to help manage your routes and models, using both basic controllers and RESTful controllers. Finally, you’ll deploy your code to Vapor Cloud.

	
Chapter 9: Parent Child Relationships: In this chapter, you’ll learn how to set up a parent-child relationship between two models. You’ll learn the purpose of these relationships, how to model them in Vapor and how to use them with routes.

	
Chapter 10: Sibling Relationships: In this chapter, you’ll learn how to implement the other type of relationship: sibling relationships. You’ll learn how to model them in Vapor and how to use them in routes.

	
Chapter 11: Testing: In this chapter, you’ll learn how to write tests for your Vapor applications. You’ll learn why testing is important and how it works with Swift Package Manager. Then, you’ll learn how to write tests for the TIL application from the previous chapters. Finally, you’ll see why testing matters on Linux and how to test your code on Linux using Docker.

	
Chapter 12: Creating a Simple iPhone App, Part 1: In the previous chapters, you created an API and interacted with it using RESTed. However, users expect something a bit nicer to use TIL! The next two chapters show you how to build a simple iOS app that interacts with the API. In this chapter, you’ll learn how to create different models and get models from the database.

	
Chapter 13: Creating a Simple iPhone App, Part 2: In this chapter, you’ll expand the app to include viewing details about a single acronym. You’ll also learn how to perform the final CRUD operations: edit and delete. Finally, you’ll learn how to add acronyms to categories.

	
Chapter 14: Templating with Leaf: In this chapter, you’ll learn how to use Leaf Vapor’s templating language to make simple and dynamic websites using Vapor. Leaf allows you to pass information to a webpage so it can generate the final HTML without knowing everything up front.

	
Chapter 15: Beautifying Pages: In this chapter, you’ll learn how to use the Bootstrap framework to add styling to your pages. You’ll also learn how to embed templates so you only have to make changes in one place. Next, you’ll also see how to serve files with Vapor.

	
Chapter 16: Making a Simple Web App, Part 1: In this chapter, you’ll learn how to create different models and how to edit acronyms.

	
Chapter 17: Making a Simple Web App, Part 2: In this chapter, you’ll learn how to allow users to add categories to acronyms in a user-friendly way. Finally, you’ll deploy your completed web application to Vapor Cloud.

	
Chapter 18: API Authentication, Part 1: In this chapter, you’ll learn how to protect your API with authentication. You’ll learn how to implement both HTTP basic authentication and token authentication in your API. You’ll also learn best practices for storing passwords and authenticating users.

	
Chapter 19: API Authentication, Part 2: Now that you’ve implemented API authentication, neither your tests nor the iOS application work any longer. In this chapter, you’ll learn the techniques needed to account for the new authentication requirements.

	
Chapter 20: Web Authentication, Cookies & Sessions: In this chapter, you’ll see how to implement authentication for the TIL website. You’ll see how authentication works on the web and how Vapor’s Authentication module provides all the necessary support. You’ll then see how to protect different routes on the website. Next, you’ll learn how to use cookies and sessions to your advantage.

	
Chapter 21: Validation: In this chapter, you’ll learn how to use Vapor’s Validation library to verify some of the information users send the application. You’ll create a registration page on the website for users to sign up. You’ll validate the data from this form and display an error message if the data isn’t correct.

	
Chapter 22: Google Authentication: In this chapter, you’ll learn how to use OAuth 2.0 to delegate authentication to Google, so users can log in with their Google accounts instead.

	
Chapter 23: GitHub Authentication: In this chapter, you’ll learn how to use OAuth 2.0 to delegate authentication to GitHub, so users can log in with their GitHub accounts instead.

	
Chapter 24: Password Reset & Emails: In this chapter, you’ll learn how to integrate an email service to send emails to users. You’ll also learn how to use emails to reset user passwords which is a common operation in most web applications.

	
Chapter 25: Adding Profile Pictures: In this chapter, you’ll learn how to send files in requests and handle that in your Vapor application. You’ll use this knowledge to allow users to upload profile pictures in the web application.

	
Chapter 26: Database/API Versioning & Migration: In this chapter, you’ll make two modifications to the TILApp using migrations. First, you’ll add a new field to User to contain a Twitter handle. Second, you’ll ensure that categories are unique. Finally, you’ll modify the app so it creates the admin user only when your app runs in development or testing mode.

	
Chapter 27: Caching: Whether you’re creating a JSON API, building an iOS app, or even designing the circuitry of a CPU, you’ll eventually need a cache. Caches are a method of speeding up slow processes and, without them, the Internet would be a terribly slow place. Some examples of slow processes you may encounter are: large database queries, requests to external services or complex computation such as parsing a large document.

	
Chapter 28: Middleware: In the course of building your application, you’ll often find it necessary to integrate your own steps into the request pipeline. The most common mechanism for accomplishing this is to use one or more pieces of middleware. They allow you to do things like log incoming requests, catch errors and display messages or rate-limit traffic to particular routes.

	
Chapter 29: Websockets: WebSockets, like HTTP, define a protocol used for communication between two devices. Unlike HTTP, the WebSocket protocol is designed for realtime communication. WebSockets can be a great option for things like chat, or other features that require realtime behavior. Vapor provides a succinct API to create a WebSocket server or client. This chapter focuses on building a basic server.

	
Chapter 30: Advanced Fluent: In this chapter, you’ll learn about some of Fluent’s more advanced features. You’ll see how to save models with enums and use Fluent’s soft delete and timestamp features. You’ll also learn how to use raw SQL and joins, as well as seeing how to return nested models.

	
Chapter 31: Deploying with Vapor Cloud: Vapor Cloud is the Vapor team’s home grown solution to hosting your Vapor applications. In this chapter, you’ll learn how to deploy a Vapor application with Postgres on Vapor Cloud.

	
Chapter 32: Deploying with Heroku: Heroku is a popular hosting solution that simplifies deployment of web and cloud applications. It supports a number of popular languages and database options. In this chapter, you’ll learn how to deploy a Vapor web app with a PostgreSQL database on Heroku.

	
Chapter 33: Deploying with Docker: Docker is a popular containerization technology that has made a huge impact in the way applications are deployed. Containers are a way of isolating your applications, allowing you to run multiple applications on the same server. In this chapter, you’ll learn how to deploy a Vapor app with with a PostgreSQL database using Docker Compose.

	
Chapter 34: Deploying with AWS: Amazon Web Services (AWS) is by far the largest Cloud provider today. It provides a number of service offerings which simplify the deployment and maintenance of applications. In this chapter, you’ll learn how to use a few of these to deploy a Vapor app.

	
Chapter 35: Production Concerns: In this chapter, you’ll learn the advantages and disadvantages of some common deployment methods for Vapor. You’ll also learn how to properly optimize, configure, and monitor your applications to increase efficiency and uptime.

	
Chapter 36: Microservices, Part 1: In this chapter, you’ll learn how to leverage microservices to split up your code into different applications. You’ll learn the benefits and the downsides of microservices and how to interact with them. Finally, you’ll learn how authentication and relationships work in a microservices architecture.

	
Chapter 37: Microservices, Part 2: In this chapter, you’ll learn about API gateways and how to make microservices accessible to clients. Finally, you’ll learn how to use Docker and Docker Compose to spin up the whole application.

You can find the book on the raywenderlich.com store here:

	
https://store.raywenderlich.com/products/server-side-swift-with-vapor

We hope you enjoy the book! :]

— Tim, Tanner, Jonas, Logan, and the Server Side Swift with Vapor team

OEBPS/html/seg1.xhtml

[image:]

OEBPS/html/graphics/img18.png
eoe Untitled
http://localhost:8080/info POST -] finfo
Authorization | | Advanced FollowRedirects Rosponse time: 50 1
Header Field Header Value

Parameter Name Parameter Value

) Use Custom HTTP Body. utFg

Parameters HTTP Body

Request Headers & Body

Accept: /%

Accept-£ncoding: gzip, deflate
Content-Type: application/json
Accept-Language: en-gb

Response Headers

HITP/1.1 200 0K

Date: Sun, 11 Feb 2018 15:02:11 GMT
Content-Type: application/json; charset=utf-8
Content-Length: 26

“reques

3

Display Options ~

Send Request

OEBPS/html/graphics/img19.png
Learn how to use Swift on the server!

Server Side Swift with Vapor introduces you to the world of server development with the
added bonus of using Swift. You'll learn how to build APIs, web sites, databases,
application servers and use Vapor’s very own Vapor Cloud to host your solutions off-site.
You'll use many of Vapor’'s modules such as Fluent, Vapor’s ORM, and Leaf, the
templating engine for building web pages.

Who This Book Is For

This book is for iOS developers who already know the basics of iOS and Swift development
and want to transfer that knowledge to writing server based applications.

Topics Covered in Server Side Swift with Vapor:

» HTTP: Learn the basics of how to make requests to and from servers.

» Fluent: Learn how to use Fluent to save and manage your models in databases.
» Controllers: Learn how to use controllers to route your requests and responses.
>

Leaf: Learn how Vapor's Leaf module and its templating language allow you to build dynamic
web sites directly.

» Middleware: Learn how built-in Vapor modules can assist with common tasks such as
validating users, settings required response headers, serving static files and more.

One thing you can count on: After reading this book, you'll be prepared to write your own
server-side applications using Vapor and, of course, Swift.

About the Vapor Team

The Vapor book team is comprised of some of the most prolific Vapor developers, including
Core Developers Tanner Nelson, Logan Wright and Jonas Schwartz. Another stalwart of the
book is active Vapor community member Tim Condon, who really got his teeth into this
project and, along with the Core Developers, made the book possible.

If you enjoyed the book, there’s also a video series
produced by our own Tim Condon. You'll find these
videos and more resources on our website at
www.raywenderlich.com.

OEBPS/html/graphics/img16.png
http:/flocalhost:8080/info POST]
Authorization | [Advanced Follow Redirects
Header Field Header Value

Parameter Name Parameter Value

ame

) Use Custom HTTP Body. utFg

Parameters HTTP Body

Untitled

=3/

Response tine: Waiting to send r
Request Headers & Body

Response Headers

Response Body

Display Options ~

Send Request

OEBPS/html/graphics/img17.png
e0e
http:/flocalhost:8080/info POST]
Authorization | [Advanced Follow Redirects
Header Field Header Value

Parameter Name Parameter Value

) Use Custom HTTP Body. utFg

Parameters HTTP Body

Untitled

50 /o

Response time: 37 ns

Request Headers & Body

Accept: /%

Accept-£ncoding: gzip, deflate
Content-Type: application/json

Accept-Language: en-gb

Response Headers

HITP/1.1 200 0K

Date: Sun, 11 Feb 2018 15:03:42 GMT.

Content-Type: text/plain,
Content-Length: 10

Response Body

Hello Tim!

charset=utf-g

Display Options ~

Send Request

OEBPS/html/graphics/img10.png
[JON] HelloVapor — Run « vapor run — 100x15

Mac-mini:HelloVapor timc$ vapor build

No .build folder, fetch may take a while...

Fetching Dependencies [Done]

Building Project [Donel

Mac-mini:HelloVapor timc$ vapor run

Running HelloVapor ...

[INFO] Migrating 'sqlite' database (/Users/timc/vapor/HelloVapor/.build/checkouts/fluent.git——4472
196847285328097/Sources/Fluent/Migration/MigrationConfig.swift:69)

[INFO] Preparing migration 'Todo' (/Users/timc/vapor/HelloVapor/.build/checkouts/fluent.git——44721
96847285328097/Sources/Fluent/Migration/Migrations.swift:111)

[INFO] Migrations complete (/Users/timc/vapor/HelloVapor/.build/checkouts/fluent.git--447219684728
5328097/Sources/Fluent/Migration/MigrationConfig.swift:73)

Running default command: .build/debug/Run serve

Server starting on http://localhost:8080

OEBPS/html/graphics/img11.png
BEE

Hello, world!

OEBPS/html/graphics/img14.png
BEE

Hello Vapor!

OEBPS/html/graphics/img15.png
© w0

Hello Tim!

OEBPS/html/graphics/img12.png
[BON] [1 HelloVapor
<[> H = MEIERED N EE B
Favourites Name ~ Date Modified Size Kind
@) Airbrop cloud.yml Today at 12:19 92 bytes YAML d
Package.resolved Today at 12:22 6 KB Docume
@ Recents R .
s Package.swift Today at 12:19 627 bytes Swift Sc
#%; Applications » = Public Today at 12:19 - Folder
o Downloads = README.md Today at 12:19 908 bytes Markdo.
m . v [Sources Today at 12:24 -- Folder
LG » [App Today at 12:19 -- Folder
= dev v [1 Run Today at 12:19 -- Folder
. s main.swift Today at 12:19 37 bytes Swift Sc
icloud > [Tests Today at 12:19 -- Folder
& iCloud Drive web.Dockerfile Today at 12:19 986 bytes Docume
= Desktop

@ Documents

Locations

Remote Disc

B Nl

OEBPS/html/graphics/img13.png
M Run) = My Mac

OEBPS/html/graphics/img4.jpg
S T

SRR o o R N :»,mm«@,m i on R

OEBPS/html/graphics/img3.jpg

OEBPS/html/graphics/img6.png

OEBPS/html/graphics/img5.jpg

OEBPS/html/graphics/img8.png
« Swift 4.2 is compatible with Vapor 2.
" Swift 4.2 is compatible with Vapor 3.

demo@demo-VirtualBox:~$ [J

OEBPS/html/toc.xhtml

Contents

		About This Book Sample

		Server Side Swift with Vapor

		Book License

		What You Need

		Chapter 2: Hello Vapor

		Where to Go From Here?

OEBPS/html/graphics/img7.png
[NON] 7 timc — -bash — 64x9

Mac-mini:~ timc$ eval "$(curl -sL check.vapor.sh)"
W4 Xcode 10 is compatible with Vapor 2.

W4 Xcode 10 is compatible with Vapor 3.

W4 Swift 4.2 is compatible with Vapor 2.

W4 Swift 4.2 is compatible with Vapor 3.

Mac-mini:~ timc$

OEBPS/html/graphics/img9.png
vapor — -bash — 120x34

Mac-mini:vapor timc$ vapor new HelloVapor

Cloning Template [Done]
Updating Package Name [Donel
Initializing git repository [Donel

Mac-mini:vapor timc$ [

b ok
ook

*okok:
ok ~ob bRk
skokokokok R
soksksfokokRFokok Kok
NN/ 7N D)D)
\/ //—-\ __7 |21\

a web framework for Swift

Project "HelloVapor" has been created.
Type ‘cd HelloVapor' to enter the project directory.
Use ‘vapor cloud deploy" to host your project for free!
Enjoy!

OEBPS/html/seg10.xhtml

[image:]

OEBPS/html/graphics/cover-image.png
By the raywenderlich.com Tutorial Team
Tim Condon, Tanner Nelson,

Jonas Schwartz & Logan Wright

OEBPS/html/graphics/img2.jpg

OEBPS/html/graphics/img1.jpg

