

Table of Contents: Overview
About This Book Sample 4...

What You Need 7...

Book License 8..

Chapter 2: What Is a Test? 10...

Where to Go From Here? 22...

Android Test-Driven Development by Tutorials Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4.

What You Need 7.

Book License 8.

Chapter 2: What Is a Test? 10.
Why should you test? 11.
How to write a test 12.
What should you test? 13.
What should you not test? 14.
When should you not test? 15.
What is test coverage? 17.
Tools 18.
Key points 20.
Where to go from here? 21.

Where to Go From Here? 22.

Android Test-Driven Development by Tutorials Sample

raywenderlich.com 3

AAbout This Book Sample

Writing apps is hard. Writing testable apps is even harder, but it doesn't have to be.
Reading and understanding all the official Google documentation on testing can be
time-consuming — and confusing. This is where Android Test-Driven Development
comes to the rescue! In this book, you'll learn about Android Test-Driven
Development the quick and easy way: by following fun and easy-to-read tutorials.

This book is for the intermediate Android developers who already know the basics of
Android and Kotlin development but want to learn Android Test-Driven
Development.

We are pleased to offer you this sample chapter from the full Android Test-Driven
Development by Tutorials, "What Is a Test?"

We hope this sample chapter will introduce you to these concepts and give you a
chance to practice them in our hands-on By Tutorials style.

The full book is ready for purchase at:

• https://store.raywenderlich.com/products/android-test-driven-development-by-
tutorials.

Enjoy!

The Android Test-Driven Development by Tutorials Team

raywenderlich.com 4

Android Test-Driven Development by Tutorials
By Lance Gleason, Victoria Gonda and Fernando Sproviero

Copyright ©2019 Razeware LLC.

No;ce of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

No;ce of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Android Test-Driven Development by Tutorials SampleAndroid Test-Driven Development by Tutorials

raywenderlich.com 5

Dedica;ons
"There are many people who helped to make this book

possible. My other half Marlene was the one who initially
suggested that I try out for the Ray Wenderlich team. She gave
me lots of encouragement and, even before the editors saw my

work, edited every chapter to make sure my sentences were
coherent. My late mother passed on her love of reading and
many creative skills for which I will always be grateful. The

many strong women and family members in my life who
taught me to live life with honesty and conviction and were

encouraging of my work. I owe a debt of gratitude to the Ruby
community for teaching me about TDD and infecting me with

enthusiasm. I’d also like to thank Ray Wenderlich and the
team for giving me the chance to share my love of TDD with
the world. Finally, I’d like to thank all of the editors and co-

authors of this book. It has been a very rewarding experience
working with everybody on the team."

— Lance Gleason

"To my family, friends, and especially my partner, who
supported me while writing this book. Tyler, thanks for all
your encouragement and patience you gave me as I spent

evenings in front of my laptop turning thoughts into words."

— Victoria Gonda

"To my girlfriend Romina, who will soon become my wife.
Thanks for your support and help, examples and discussions
about the topics of this book. Yes, she’s a developer too, isn’t
that great? :] Also, to my family, who had to listen repeatedly

about what I was writing, and no, they aren't developers!"

— Fernando Sproviero

Android Test-Driven Development by Tutorials SampleAndroid Test-Driven Development by Tutorials

raywenderlich.com 6

WWhat You Need

To follow along with this book, you'll need the following:

• Kotlin 1.3: This book uses Kotlin 1.3 throughout. The examples may work with an
earlier version of Kotlin, but they are untested.

• Android Studio 3.5 or later. Android Studio is the main development tool for
Android. You'll need Android Studio 3.5 or later for the tasks in this book. You can
download the latest version of Android Studio from Android's developer site here:
https://developer.android.com/studio.

If you haven't installed the latest version of Android Studio, be sure to do that before
continuing with the book. The code covered in this book depends on Android 10,
Kotlin 1.3 and Android Studio 3.5 — you may get lost if you try to work with an older
version.

raywenderlich.com 7

LBook License

By purchasing Android Test-Driven Development by Tutorials, you have the following
license:

• You are allowed to use and/or modify the source code in Android Test-Driven
Development by Tutorials in as many apps as you want, with no attribution
required.

• You are allowed to use and/or modify all art, images and designs that are included
in Android Test-Driven Development by Tutorials in as many apps as you want, but
must include this attribution line somewhere inside your app: “Artwork/images/
designs: from Android Test-Driven Development by Tutorials, available at
www.raywenderlich.com.”

• The source code included in Android Test-Driven Development by Tutorials is for
your personal use only. You are NOT allowed to distribute or sell the source code
in Android Test-Driven Development by Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement.

In no event shall the authors or copyright holders be liable for any claim, damages or
other liability, whether in an action of contract, tort or otherwise, arising from, out of
or in connection with the software or the use or other dealings in the software.

raywenderlich.com 8

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

Android Test-Driven Development by Tutorials Sample Book License

raywenderlich.com 9

2Chapter 2: What Is a Test?
By Fernando Sproviero

A test is a manual or automatic procedure used to evaluate if the System Under
Test (SUT) behaves correctly.

The SUT may be a method, an entire class, a module or even a whole application.

From now on, when mentioning anything related to writing a test this book will be
referring to the automatic procedure form of a test.

To write a test, you need to understand the feature, specification or requirement of
the component you are implementing. That component may be an Activity,
Fragment, View Model or several of these components working together. These
may come in different forms, such as user stories, use cases or some other kind of
documentation.

Testing is an important part of software development. By including tests along with
your code, you can ensure that your code works and that later changes to the code
won't break it. Tests can give you the peace of mind you need to develop quickly and
catch bugs before they're released.

Essentially, there are two approaches to writing tests:

• Write tests before you write the feature.

• Write tests after you write the feature.

This book primarily focuses on writing tests first versus writing them after a feature
has been implemented.

raywenderlich.com 10

Why should you test?
Writing tests can take more time up front, and it is code you write that the client
won't "see", which is why tests are sometimes skipped by developers. However,
having tests can speed up development down the road and it presents some
advantages.

Change/refactor confidence
You have probably run into a scenario in which you have a section of your
application that works correctly before adding new functionality to the application.
After adding new functionality, either in Quality Assurance (QA) or after it is
released to customers you discover that this new functionality broke the previously
working section. That is called a regression.

Having good, reliable, effective tests would have caught that at the moment the bug
was introduced saving time in QA and preventing preventable bugs from making it to
your users. Another related scenario is where you have a section of your application
that is working correctly, but could use some refactoring to use a new library, break
things up to follow a more readable architectural pattern, etc. A good test suite will
provide you with the confidence to make those changes without having to do time
consuming manual QA regression test cycles to ensure everything is still working
correctly.

However, you should always bear in mind that this is not a 100% "insurance". No
matter how many tests you write, there could be edge cases that the tests don't
catch. Even so, it's absolutely safer to have tests that catch most issues than not
having them at all!

Usually, you will write tests for the most common scenarios your user may
encounter. Whenever someone finds a bug that your tests didn't catch, you should
immediately add a test for it.

Documenta;on
Some companies and developers treat tests as a complementary documentation to
explain how the implementation of a feature works. When you have well-written
tests, they provide an excellent description of what your code should do. By writing a
test, its corresponding implementation and repeating this until a feature is
completed, bearing in mind that these tests can be treated as specifications, will help
you and your team when a refactor or a modification of the feature is required.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 11

When you're working on a piece of code, you can look at the tests to help you
understand what the code does. You can also see what the code should not do.
Because these are tests rather than a static document, as long as the tests are passing
you can be sure this form of documentation is up-to-date!

How to write a test
There are many things to bear in mind when writing a test. You'll understand them
by reading this book and practicing writing tests. However, the most important
aspects of writing a test are as follows:

• Naming: You should give a meaningful name to each test so that it is clearly
identifiable in code and in subsequent reports.

For example, consider a quiz game:

fun whenAnsweringCorrectly_shouldIncrementCurrentScore() {
 ...
}

This test's name represents the state of what you are testing and the expected
behavior. This is useful when looking at the report after running a test suite.

• Short and simple: You should aim to write tests that focus on a narrow piece of
functionality. As a rule of thumb, if your test methods get long, and have multiple
assertion statements to check conditions of the system, it may be trying to test
too many things. In that scenario it may be a good idea to break up that test into
multiple, more narrowly focused tests. Take a look at this test:

fun whenIncrementingScore_shouldIncrementCurrentScore() {
 val score = Score(0)

 score.increment()

 if (score.current == 1) {
 print("Success")
 } else {
 throw AssertionError("Invalid score")
 }
}

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 12

The test only has seven lines of code to bring the SUT in the desired state and check
the expected behavior.

• Check one single thing: Check one thing at a time. If you need to test multiple
things, write an additional test similar to the one you've just previously run, but
change the check:

fun
whenIncrementingScore_aboveHighScore_shouldAlsoIncrementHighScor
e() {
 val score = Score(0)

 score.increment()

 if (score.highest == 1) {
 print("Success")
 } else {
 throw AssertionError("Invalid high score")
 }
}

As you can see, this test is very similar to the previous one; however, the check is
different. In the first test, you checked that the score of the quiz game incremented
correctly. Now, you check that the highest score also increments along with the score.

• Readable: Anyone in the team should be able to read and understand what is
going on in your test and/or what is the purpose of the test. Consequently, you
should pay attention to the naming of each variable or method used and the logic
sequence of the test. If you don't, then the tests will become difficult to maintain
and keep up-to-date.

What should you test?
You should test code that is related to the logic of your app. This may include code
that you have to write to:

• Show the UI and navigate between the screens of your app.

• Make network requests to an API.

• Persist data.

• Interact with device sensors.

• Model your domain.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 13

Having tests for the logic of your application should be your main goal, however,
bear also in mind the following:

Code that breaks oLen
If you have a legacy project without tests, and it breaks often whenever you modify
its code, it's useful to have tests for them, so that the next time you make a
modification you will be sure that it won't keep breaking.

Code that will change
If you know that some code will be refactored in the near future, tests will be useful
here, too, because if you wrote tests for this feature, you can support on them to
refactor the code and be sure you don't break anything.

What should you not test?

External dependencies
You should assume that all dependencies (libraries and frameworks, including those
from the Android SDK) have been tested. Thus, you shouldn't test functionality of
external libraries because the goal is to test things that you control, not a third party
tool created by someone else.

Note: In the real world, sometimes some of those dependencies are not tested.
So, as a rule of thumb, when you have to choose between two or more libraries
that have the same functionality, you should go with the one that has tests.
This assures you that the features of the library work as expected and that the
library developers won't break the features when adding new features and
releasing new versions.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 14

Autogenerated code
You shouldn't write tests for autogenerated code. Following the previous principle,
it's supposed to be that the library or tool that generates code is tested properly.

When should you not test?

Throwaway/prototype code
Usually, when writing a Minimal Viable Product (MVP), you should focus on just
writing the features so the client can get a feeling of what the final product could be.

However, all the stakeholders need to understand that all the code (or almost
everything) you wrote will be thrown away. In this case, it doesn't make sense to
write any kind of tests.

Code you don't have ;me to test
This is a controversial topic. Often, developers get stuck in a rut wherein they are
fighting fires instead of proactively writing quality code, and they are not given the
time to address code quality.

If you are working on a cash-strapped startup, where requirements are changing
rapidly, that extra time to test could cause this fledgling company to miss key
deadlines, not iterate fast enough, fail to raise it's next round of funding and go out
of business.

On a new greenfield project, writing tests can double the amount of time to get
features out in the short term. But, as the project gets larger, the tests end up saving
time. Writing tests has its benefits; however, it'll take time to write and maintain
tests. You and your team will need to make sure that you understand the trade-offs
when determining which path you want to take.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 15

A Note on Technical Debt

When you take out a financial loan, you get the benefit of an immediate
infusion of cash. But a lender charges you interest on the loan in addition to
the principal, all of which you will need to pay back. If you take on too much
debt, you can end up in a situation where it is impossible to pay back the loan.
In this case, you might have to declare bankruptcy.

Technical debt has many parallels to financial debt. With technical debt you
make trade offs in your code, such as not writing unit tests, not refactoring,
having less stringently quality standards, etc. to get features out quicker. This
is analogous to getting a financial cash infusion. But as the code base grows,
the lack of tests increase the number of regressions, bugs, time it takes to
refactor and QA time. This is analogous to interest on a financial loan. In
order to pay off that debt you start to add unit tests to your code. That is
analogous to paying down the principal on a loan. Finally, if too many
shortcuts are taken for too long, the project may reach a point where it is more
advantageous to scrap the entire project and start with a clean slate. That is
the same as declaring bankruptcy to get relief from too much financial debt.

Code spikes
At some point, you may find yourself working with a new library or, perhaps, you may
realize that you aren't sure how to implement something. This makes it very difficult
to write a test first because you don't know enough about how you are going to
implement the functionality to write a meaningful failing test. In these instances, a
code spike can help you figure things out.

A code spike is a throwaway piece of untested code that explores possible solutions
to a problem. This code should not be considered shippable. Once you have a
solution, you will want to delete your spike and then build up your implementation
using TDD.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 16

What is test coverage?
You can measure how many lines of code of your app have been executed when you
run your tests. An app with a high test coverage percentage "suggests" that it works
as expected and has a lower chance of containing bugs.

You may have asked yourself how many tests should you write. As mentioned before,
you should at least write those that cover the most common scenarios.

In general, you can think of this metric as follows:

Criterion
To measure, there are several coverage criterion that you may choose. The most
common are:

• Function/method coverage: How many functions have been called?

• Statement coverage: How many statements of each function have been
executed?

• Branch coverage: Has each branch in an if or a when statement been executed?

• Condition coverage: Has each subcondition in an if statement been evaluated to
true and also to false?

For example, suppose that the following code is part of a feature of your app:

fun getFullname(firstName: String?, lastName: String?): String {
 var fullname = "Unknown"
 if (firstName != null && lastName != null) {
 fullname = "$firstName $lastName"
 }
 return fullname
}

Having at least one test that calls this function would satisfy the function/method
coverage criteria.

If you have a test that calls getFullname("Michael", "Smith") you would satisfy
the statement coverage criteria, because every statement would be executed.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 17

If you also have a test calling getFullname(null, "Smith"), now it complies with
branch coverage criteria, because the line inside the if is not executed and the
previous test that called getFullname("Michael", "Smith") executes the line
inside the if statement.

To satisfy the condition coverage criteria, you need tests that call
getFullname(null, "Smith") and getFullname("Michael", null) so that each
subcondition, firstName != null and lastName != null would evaluate to true
and false.

Tools
There are tools that can assist you to measure the test coverage metric.

JaCoCo (Java Code Coverage Library) is one of them. Don't worry, it handles Kotlin as
well!

This library generates a report for you to check which lines were covered by your
tests (green) and which ones were not (red or yellow).

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 18

Android Studio also comes with a built-in feature to run tests with Coverage.

100% coverage?
In real-world apps, reaching a test coverage of 100%, no matter which criterion you
use, is almost impossible to achieve. It often doesn't add value to test all methods, of
all the classes, all of the time.

For example, suppose you have the following class:

data class Pet(var name: String)

You shouldn't write the following test:

fun whenCreatingPetWithName_shouldTheNameSetFromTheConstructor()
{
 val aName = "Rocky"
 val aPet = Pet(aName)

 if (aPet.name == aName) {
 print("Success\n")

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 19

 } else {
 throw AssertionError("Invalid pet name")
 }
}

In this case, you are testing a feature (getting and setting a property) of a Kotlin data
class that is auto-generated for you!

Test coverage gives you an exact metric of how much of your code has not been
tested. If you have a low measure, then you can be confident that the code isn't well
tested. The inverse however is not true. Having a high measure is not sufficient to
conclude that your code has been thoroughly tested.

If you try to reach 100% test coverage, you'll find yourself writing meaningless, low-
quality tests for the sake of satisfying this goal.

Neither you nor any team member should be obsessed with a test coverage of 100%.
Instead, make sure you test the most common scenarios and use this metric to find
untested code that should be tested.

If you feel that writing a particular test is taking too long, you might want to take a
step back and evaluate if that test is adding enough value to justify the effort. Also, if
a simple fix is causing a lot of changes to your tests, you may need to look at
refactoring your tests or implementation to make them less brittle.

At the end of the day, your goal is to create software that provides value to its users.
If you are doing TDD well, as your project gets larger, the total amount of effort
spent on tests, implementation and QA should be the same or less than if you were
creating the same product, with the same level of quality without doing TDD. That
said, a project that is doing a good job at TDD may still take more development effort
than a project that is not because the project with TDD will have a higher level of
quality. The key is finding the right balance for your project.

Key points
• A test is a procedure used to evaluate if a method, an entire class, a module or

even a whole application behaves correctly.

• This book focuses on writing tests before implementing the features.

• You should write tests to have confidence when refactoring.

• Tests also act as complementary documentation of the application features.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 20

• The tests you write should be short, simple to read and easy to follow.

• You should only write tests related to the logic of your application.

• You can use test coverage tools to find untested code that should be tested.

Where to go from here?
Congratulations! Now you should understand what a test is, why it matters and the
coverage metric.

In the next chapter, you'll find out what Test Driven Development (TDD) is and what
the benefits are of writing tests before writing the feature. In the following chapters,
you'll also start writing apps with their corresponding tests.

Android Test-Driven Development by Tutorials Sample Chapter 2: What Is a Test?

raywenderlich.com 21

WWhere to Go From Here?

We hope you enjoyed this sample of Android Test-Driven Development by Tutorials!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

Chapter 1: Introduction: If you're new to testing and want an overview of what this
book covers, start with chapter 1 for a gentle introduction into testing.

Chapter 2: What Is a Test?: Do you know why you should test or what to test? In
this chapter, "What is a Test?", you'll learn both of these and also dive into code
coverage.

Chapter 3: What Is TDD? Now that you know what a test is, start writing your first
tests! Not only will you start writing tests, but you'll also do so in a test-driven
development way.

Chapter 4: The Testing Pyramid: If you're wondering how UI tests, integration
tests and unit tests all fit into one application, learn about the testing pyramid and
how you can structure various types of tests for your app.

Chapter 5: Unit Tests: Get your drink ready as you explore a cocktail app and write
your unit tests in Android practicing test-driven development.

Chapter 6: Architecting for Testing: The architecture of your project can make or
break your testing experience. Learn the pros and cons of each architecture and how
they affect your tests.

Chapter 7: Introduction to Mockito: Level up your testing knowledge leveraging
Mockito as you learn the basics of how to use mocks and spies in your tests.

raywenderlich.com 22

Chapter 8: Integration: Often, you're going to have to test the interaction between
objects in your application. In this chapter, you'll practice writing integration tests
by working on a Wishlist app.

Chapter 9: Testing the Persistence Layer: Get started learning how to test the
persistence layer in your app. In this chapter, you'll learn how to handle statefulness
in your tests and strategies for creating randomized test data.

Chapter 10: Testing the Network Layer: While HTPP requests can be
unpredictable, your tests don't have to be. In this chapter, learn how to write
predictable network tests working on the Punchline app. Learn some random jokes
on the way as well!

Chapter 11: User Interface: UI tests allow you to test your app end-to-end without
having to manually click-test your app. Learn the fundamentals of UI tests using the
Espresso library.

Chapter 12: Common Legacy App Problems: Automated tests can help catch bugs
in all applications, including legacy applications. Learn how to work around
technical debt and apply testing techniques.

Chapter 13: High-Level Testing with Espresso: Get started with the Coding
Companion Finder app as you work through a legacy application and write UI tests
using Espresso.

Chapter 14: Hands-On Focused Refactoring: Refactoring a legacy application
doesn't have to be scary once you have some tests for it. Learn how to take small
steps and move slowly as you keep your test suite green as you make changes to your
app.

Chapter 15: Refactoring Your Tests: Your tests are code too. In this chapter, you'll
learn how to refactor both your app code and test code to make your tests reliable
and maintainable.

Chapter 16: Strategies for Handling Test Data: Learn multiple ways to handle test
data in your Android tests by learning by tutorials. In this chapter, you'll explore a
variety of ways of using test data in your tests.

Chapter 17: Continue Integration & Other Related Tools: Explore what it means
to have continuous integration for your tests and the tools you can use to achieve it.
You'll learn the pros and cons of different CI strategies in this chapter.

Android Test-Driven Development by Tutorials Sample Where to Go From Here?

raywenderlich.com 23

Chapter 18: Testing Around Other Components: Set boundaries in your test and
use strategies to help to interact with other libraries and parts of the Android
framework.

Chapter 19: Other Related Techniques: Learn about other techniques that can
complement your TDD process to make your team more collaborative and therefore
effective.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/android-test-driven-development-by-tutorials

We hope you enjoy the book!

— The Android Test-Driven Development by Tutorials Team

Android Test-Driven Development by Tutorials Sample Where to Go From Here?

raywenderlich.com 24

	About This Book Sample
	What You Need
	Book License
	Chapter 2: What Is a Test?
	Why should you test?
	How to write a test
	What should you test?
	What should you not test?
	When should you not test?
	What is test coverage?
	Tools
	Key points
	Where to go from here?

	Where to Go From Here?

