

Table of Contents: Overview
About This Book Sample 4...
What You Need 10..
Book License 11...
Book Source Code & Forums 12..
Chapter 1: What Is Asynchronous Programming? 14..................
Where to Go From Here? 30...

Kotlin Coroutines by Tutorials Sample

raywenderlich.com 2

Table of Contents: Extended
About This Book Sample 4.
What You Need 10.
Book License 11.
Book Source Code & Forums 12.
Chapter 1: What Is Asynchronous Programming? 14.

Providing feedback 14.
Why mulRthreading? 16.
InteracRng with the UI thread from the background 17.
Handling work compleRon using callbacks 21.
IndentaRon hell 22.
Using reacRve extensions for background work 23.
Diving deeper into the complexity of Rx 25.
A blast from the past 26.
Explaining corouRnes: The inner works 26.
VariaRons through history 27.
Key points 28.
Where to go from here? 29.

Where to Go From Here? 30.

Kotlin Coroutines by Tutorials Sample

raywenderlich.com 3

AAbout This Book Sample

Kotlin Coroutines by Tutorials will give you the tools you need to solve common
programming problems using asynchronous programming.

The importance of concurrency is discovered quite early on by people who start with
Android development. Android is inherently asynchronous and event-driven, with
strict requirements as to on which thread certain things can happen. Add to this the
often-cumbersome Java callback interfaces, and you will be trapped in spaghetti
code pretty quickly (aptly termed as “Callback Hell”). No matter how many coding
patterns you use to avoid that, you will have to encounter the state change across
multiple threads in one way or the other.

The only way to create a responsive app is by leaving the UI thread as free as
possible, letting all the hard work be done asynchronously by background threads.

We are pleased to offer you this sample from the full Kotlin Coroutines by Tutorials
book that will introduce you to these concepts and give you a chance to practice
them in our hands-on By Tutorials style.

The chapter that follows introduce you to the foundational concepts of
asynchronous programming and how to get started with coroutines on Android.

This sample includes:

• Chapter 1: What Is Asynchronous Programming?: Before getting you into the
magic of coroutines, we’ll help you understand what problem coroutines will solve
for you. You’ll learn what it means to be asynchronous and how to escape from an
“indentation hell.” This is a fundamental chapter in order to understand the basics
of multi-threading and concurrent programming.

raywenderlich.com 4

The book is ready for purchase at:

• https://store.raywenderlich.com/products/kotlin-coroutines-by-tutorials.

Enjoy!

The Kotlin Coroutines by Tutorials Team

Kotlin Coroutines by Tutorials Sample About This Book Sample

raywenderlich.com 5

Kotlin Corou7nes by Tutorials
By Filip Babić and Nishant Srivastava

Copyright ©2019 Razeware LLC.

No7ce of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without
prior written permission of the copyright owner.

No7ce of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 6

Dedica7ons
"To my friends and family. And mostly to my loved one. Thank
you for being patient and understanding, when I couldn’t grab
a cup of coffee or tea and catch up. Huge thanks to everyone

who’s supported me throughout the entire process, with
positive and motivational encouragement. This wouldn’t have

gone as nearly as smooth without you."

— Filip Babić

"I would like to thank the many people who have made this
book possible. To my father, who gave me the desire to be a

curious soul and learn more. To my mom, who has supported
me all along whenever I have had doubts about my own

capabilities as a writer. To my friends, Saachi Chawla and Kirti
Dohrey, who have always believed in me during my ups and
downs. To people who have directly or indirectly been my

mentor and helped me through understanding technology at a
deeper level whenever I found myself stuck. And lastly, to the

team at raywenderlich.com, my co-author, editors and
everyone involved in making this book a reality."

— Nishant Srivastava

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 7

About the Authors
Nishant Srivastava is an author on this book. Nishant is a
Sr.Android Engineer at Soundbrenner in Berlin, Germany and an
open source enthusiast who spends his time doodling when not
hacking on Android. He is a caffeine-dependent life-form and can
be found either talking about android libraries or advocating that
coffee is the elixir of life at community gatherings. He has been
part of two startups in the past (Founding Team Member at
OmniLabs, Inc. and one of the first employees at Silverpush) with
experience in Android SDK Engineering and Audio Digital Signal
Processing(DSP) on Android. While working at his past company
(Silverpush), he developed the company’s patented UAB (Unique
Audio Beacon) Technology.

Filip Babić is an author of this book. He is an experienced Android
developer from Croatia, working at the Five Agency, building
world-known applications, such as the RosettaStone language-
learning application and AccuWeather, the globally known weather
reporting app. Previously he worked at COBE d.o.o., a German-
owned mobile agency, which is partners with the biggest German
media company. He's enthusiastic about the Android ecosystem,
focusing extensively on applying Kotlin to Android applications,
and building scalable, testable and user-friendly applications.
Passionately building up good spirit in local development groups
in Croatia, focusing on lectures, education, and engagement of
new, aspiring developers in the Croatian IT community. But also
pursuing global conferences, meetups, and IT fests. Altruistic when
it comes to consulting and mentoring, trying to give help to
everyone, whenever possible, motivated by the ideology that the
Android ecosystem we live in is only as good as we make it.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 8

About the Editors
Eric Crawford is a technical editor of this book. Eric is a Senior
Software Developer at John Deere, where he bounces between iOS
and Android development. Before coming to Deere he did freelance
mobile development and serverside web development utilizing
Java. In his free time he likes to dabble into other platforms like
IOT and cloud computing.

Kevin Moore is a technical editor for the book. He has been
developing Android apps for over 9 years and at many companies.
He's written several articles at www.raywenderlich.com and
created the "Programming in Kotlin" video series. He enjoys
creating apps for fun and teaching others how to write Android
apps.In addition to programming, he loves playing Volleyball and
running the sound system at church.

Massimo Carli is the final pass editor of this book. Massimo has
been working with Java since 1995 when he co-founded the first
Italian magazine about this technology (http://www.mokabyte.it).
After many years creating Java desktop and enterprise application,
he started to work in the mobile world. In 2001 he wrote his first
book about J2ME. After many J2ME and Blackberry applications, he
then started to work with Android in 2008. The same year he wrote
the first Italian book about Android; best seller on Amazon.it. That
was the first of a series of 8 books. he worked at Yahoo and
Facebook and he's actually Engineering Tech Lead at Lloyds. He's a
musical theatre lover and a supporter of the soccer team S.P.A.L.

About the Ar7st
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Kotlin Coroutines by Tutorials Sample Kotlin Coroutines by Tutorials

raywenderlich.com 9

WWhat You Need

To follow along with this book, you'll need the following:

• IntelliJ IDEA Community Edition 2019.1.x: Available at https://
www.jetbrains.com/idea/. This is the environment in which you'll develop most of
the sample code in this book.

• Jave SE Development Kit 8.: Most of the code in this book will be run on the Java
Virtual Machine or JVM, for which you need a Java Development Kit or JDK. The
JDK can be downloaded from Oracle at http://www.oracle.com/technetwork/java/
javase/downloads/index.html.

• Android Studio 3.x.: For the examples about Android described in Section 3, you
can use the IDE available at https://developer.android.com/studio/.

If you haven't installed the latest versions of IntelliJ IDEA Community Edition and
JDK 8, be sure to do that before continuing with the book. Chapter 2: "Setting Up
Your Build Environments" will show you how to get started with IntelliJ IDEA to run
Kotlin coroutines code on the JVM.

raywenderlich.com 10

LBook License

By purchasing Kotlin Coroutines by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in Kotlin Coroutines by
Tutorials in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Kotlin Coroutines by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from Kotlin
Coroutines by Tutorials, available at www.raywenderlich.com.”

• The source code included in Kotlin Coroutines by Tutorials is for your personal use
only. You are NOT allowed to distribute or sell the source code in Kotlin Coroutines
by Tutorials without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action of contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 11

BBook Source Code &
Forums

If you bought the digital edi7on
The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from store.raywenderlich.com.

If you bought the print version
You can get the source code for the print edition of the book here:

https://store.raywenderlich.com/products/kotlin-coroutines-by-tutorials-source-
code

Forums
We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

Digital book edi7ons
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

raywenderlich.com 12

Visit our Kotlin Coroutines by Tutorials store page here:

• https://store.raywenderlich.com/products/kotlin-coroutines-by-tutorials.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Kotlin Coroutines by Tutorials Sample Book Source Code & Forums

raywenderlich.com 13

1Chapter 1: What Is
Asynchronous
Programming?
By Filip Babić

The UI (user interface) is a fundamental part of almost every application. It’s what
users see and interact with in order to do their tasks. More often than not,
applications do complex work, such as talking to external services or processing
data from a database. Then, when the work is done, they show a result, mostly in
some form of a message.

The UI must be responsive. If the work at hand takes a lot of time to complete, it’s
necessary to provide feedback to the user so that they don’t feel like the application
has frozen, that they didn’t click a button properly — or perhaps that a feature
doesn’t work at all.

In this chapter, you’ll learn how to provide useful information to users about what’s
happening in the application and what different mechanisms exist for working with
multiple tasks. You’ll see what problems arise while trying to do complex and long-
running synchronous operations and how asynchronous programming comes to the
rescue.

You’ll start off by analyzing the flow of a function that deals with data processing
and provides feedback to the user.

Providing feedback
Suppose you have an application that needs to upload content to a network. When
the user selects the Upload button, loading bars or spinners appear to indicate that
something is ongoing and the application hasn’t stopped working. This information
is crucial for a good user experience since no one likes unresponsive applications.

raywenderlich.com 14

But what does providing feedback look like in code?

Consider the following task wherein you want to upload an image but must wait for
the application to complete the upload:

fun uploadImage(image: Image) {
 showLoadingSpinner()
 // Do some work
 uploadService.upload(image)
 // Work’s done, hide the spinner
 hideLoadingSpinner()
}

At first glance, the code gives you an idea of what’s happening:

• You start by showing a spinner.

• You then upload an image.

• When complete, you hide the spinner.

Unfortunately, it’s not exactly that simple because the spinner contains an
animation, and there must be code responsible for that. showLoadingSpinner()
must then contain code such as this:

fun showLoadingSpinner() {
 showSpinnerView()
 while(running) {
 rotateSpinnerImage()
 delay()
 }
}

showSpinnerView() displays the actual View component, and the following cycle
manages the image rotation. But when does this function actually return?

In uploadImage(), you assumed that the spinner animation was running even after
the completion of showLoadingSpinner(), so that the uploading of the image could
start. Looking at the previous code, this is not possible. If the spinner is animating, it
means that showLoadingSpinner() has not completed. If showLoadingSpinner()
has completed, then the upload has started. This means that the spinner is not
animating anymore. This is happening because when you invoke
showLoadingSpinner() you’re making a blocking call.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 15

Blocking calls
A blocking call is essentially a function that only returns when it has completed. In
the example above, showLoadingSpinner() prevents the upload of an image
because it keeps the main thread of execution busy until it returns. But when it
returns (because running becomes false), the spinner stops rotating.

So how can you solve this problem and animate the spinner even while the upload
function is executing?

Simply put, you need additional threads on which to execute your long-running
tasks.

The main thread is also known as the UI thread, because it’s responsible for
rendering everything on the screen, and this should be the only thing it does. This
means that it should manage the rotation of the spinner but not the upload of the
image — that has nothing to do with the UI. But if the main thread cannot do this
because that isn’t its job, what can execute the upload task? Well, quite simply, you
need a new thread on which to execute your long-running tasks!

Computers nowadays are far more advanced than they were 10 or 15 years ago. Back
in the day computers could only have one thread of execution making them freeze
up if you tried to do multiple things at once. But because of technological
advancements, your applications support a mechanism known as multi-threading.
It’s the art of having multiple threads, where each can process a piece of work,
collectively finishing the needed tasks.

Why mul7threading?
There’s always been a hardware limit on how fast computers could be — that’s not
really about to change. Moreover, the number of operations a single processor in a
computer can complete is reaching the law of diminishing returns.

Because of that, technology has steered in the direction of increasing the number of
cores each processor has, and the number of threads each core can have running
concurrently. This way, you could logically divide any number of tasks between
different threads, and the cores could prioritize their work by organizing them. And,
by doing so, multithreading has drastically improved how computer systems
optimize work and the speed of execution.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 16

You can apply the same idea to modern applications. For example, rather than
spending large amounts of money on servers with better hardware, you can speed up
the entire system using multithreading and the smart application of concurrency.

Comparing the main and worker threads
The main thread, or the UI thread, is the thread responsible for managing the UI.
Every application can only have one main thread in order to avoid a classical
problem called deadlock. This can happen when many threads access the same
resources — in this case, UI components — in a different order. The other threads,
which are not responsible for rendering the UI, are called worker threads or
background threads. The ability to allow the execution of multiple threads of
control is called multithreading, and the set of techniques used to control their
collaboration and synchronization, is called concurrency.

Given this, you can rethink how uploadImage() should work.
showLoadingSpinner() starts a new thread that is responsible for the rotation of
the spinner image, which interacts with the main thread just to notify a refresh in
the UI. Starting a new thread, the function is now a non-blocking call and can
return immediately, allowing the image upload to start its own worker thread. When
completed, this background thread will notify the main thread to hide the spinner.

Once the program launches a background thread, it can either forget about it or
expect some result. You will see how background threads process the result, and
communicate with the main thread, in the following section.

Interac7ng with the UI thread from the
background
The upload image example demonstrates how important managing threads is. The
thread responsible for rotating the spinner image needs to communicate with the
main thread in order to refresh the UI at each frame. The worker thread is
responsible for the actual upload and needs to communicate with the UI thread
which handles the animation when it completes in order to stop it, and to hide the
spinner. All of this must happen without any type of blocks. Knowing how threads
communicate is key to achieving the full potential of concurrency.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 17

Sharing data
In order to communicate, different threads need to share data. For instance, the
thread responsible for the rotation of the spinner image needs to notify the main
thread that a new image is ready to be displayed. Sharing data is not simple, and it
needs some sort of synchronization, which is one of the main benefits of well written
concurrency code.

What happens, for instance, if the main thread receives a notification that a new
image is available and, before displaying it, the image is replaced? In this case, the
application would skip a frame and a race condition would happen. You then need
some sort of a thread safe data structure. This means that the data structure should
work correctly even if accessed by multiple threads at the same time.

Accessing the same data from multiple threads, maintaining the correct behavior
and good performance, is the real challenge of concurrent programming.

There are special cases, however. What if the data is only accessed and never
updated? In this case, multiple threads can read the same data without any race
condition, and your data structure is referred to as immutable. Immutable objects
are always thread safe.

As a practical example, take a coffee machine in an office. If two people shared it,
and it wasn’t thread safe, they could easily make bad coffee or spill it and make a
mess. As one person started making a mocha latte and another wanted a black
coffee, they would ultimately ruin the machine — or worse, the coffee.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 18

What are the data structures that you can use in order to safely share data in a
thread? The most important data structures are queues and, as a special case,
pipelines.

Queues
Threads usually communicate using queues, and they can act on them as producers
or consumers. A producer is a thread that puts information into the queue, and the
consumer is the one that reads and uses them. You can think of a queue as a list in
which producers append data to the end, and then consumers read data from the top,
following a logic called FIFO (First In First Out). Threads usually put data into the
queue as objects called messages, which encapsulate the information to share.

A queue is not just a container, but it also provides synchronization in order to
allow a thread to consume a message only if it is available. Otherwise, it waits if the
message is not available. If the queue is a blocking queue, the consumer can block
and wait for a new message — or just retry later.

The same can happen for the producer if the queue is full. Queues are thread safe, so
it is possible to have multiple producers and multiple consumers.

A great real-life example of queues are fast food lines.

Imagine having three lines at a fast food restaurant. The first line has no customers,
so the person working the line is blocked until someone arrives. The second has
customers, so the line is slowly getting smaller as the worker serves customers.
However, the last line is full of customers, but there’s no one to serve them; this, in
turn, blocks the line until help arrives.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 19

In this example customers form a queue waiting to consume what the fast food
workers are preparing for them. When the food is available, the customer consumes
it and leaves the queue. You could also look at the customers as produced work,
which the workers need to consume and serve, but the idea stays the same.

Pipelines
If you think about pipes or faucets and how they work, it’s a fairly simple concept.
When you release the pressure by turning the valve, you’re actually requesting
water. On the other side of that request, there’s a system that regulates the flow of
water. As soon as you make a request, it is blocked until the water comes running —
just like a blocking call.

The same process is used for pipelines or pipes in programming. There’s a pipe that
allows streams of data to flow, and there are listeners. The data is usually a stream
of bytes, which the listeners parse into something more meaningful.

As an example, you can also think about factory lines. Just like in a factory line, if
there’s too much product, the line has to stop until you process everything. That is, if
there’s too much data that you haven’t yet processed, the pipeline is blocked until
you consume some of the data and make room for more to flow. And, alternatively, if
there’s not enough product, the person processing it sits and waits until something
comes up.

In other words, if there’s not enough data to flow — the pipe is empty — you’re
blocked until some data emerges. Because you’re either trying to send data to an
overflowed stream, or trying to get data from an empty stream, the mechanism
doesn’t know how to react but to block until the conditions are met.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 20

You can think of pipes as blocking queues wherein you don’t have messages, but
chunks of bytes.

Handling work comple7on using callbacks
Out of all the asynchronous programming mechanisms, callbacks are the most often
used. This consists of the creation of objects that encapsulate code that somebody
else can execute later, like when a specific task completes . This approach can also be
used in real life when you ask somebody to push a button when they have completed
some task you have assigned to them. When using callbacks, the button is
analogous to code for them to execute; the person executing the task is a non-
blocking function.

How can you put some code into an object to pass around? One way is by using
interfaces. You can create the interface in this way:

interface OnUploadCallback {

 fun onUploadCompleted()
}

With this, you are passing an implementation of the interface to the function that is
executing the long-running task. At completion, this function will invoke
onUploadCompleted() on the object. The function doesn’t know what that
implementations does, and it’s not supposed to know.

In modern programming languages like Kotlin, which support functional
programming features, you can do the same with a lambda expression. In the
previous example, you could pass the lambda to the upload function as a callback.
The lambda would then contain the code to execute when the upload task
completes:

fun uploadImage(image: Image) {
 showLoadingSpinner()

 uploadService.upload(image) { hideLoadingSpinner() }
}

Looking back at the very first snippet, not much has changed. You still show a
loading spinner, call upload() and hide the spinner when the upload is done. The
core difference, though, is that you’re not calling hideLoadingSpinner() right after
the upload. That function is now part of the lambda block, passed as a parameter to
upload(), which will be executed at completion. Doing so, you can call the wrapped

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 21

function anytime you’re done with the connected task. And the lambda block can do
pretty much anything, not just hide a loading spinner.

In case some value is returned, it is passed down into the lambda block, so that you
can use it from within. Of course, the inner implementation of the uploadService
depends on the service and the library that you’re using. Generally, each library has
its own types of callbacks. However, even though callbacks are one of the most
popular ways to deal with asynchronicity, they have become notorious over the
years. You’ll see how in the next section.

Indenta7on hell
Callbacks are simpler than building your own mechanisms for thread
communication. Their syntax is also fairly readable, when it comes to simple
functions. However, it’s often the case that you have multiple function calls, which
need to be connected or combined somehow, mapping the results into more
complex objects.

In these cases, the code becomes extremely difficult to write, maintain and reason
about. Since you can’t return a value from a callback, but have to pass it down the
lambda block itself, you have to nest callbacks. It’s similar to nesting forEach or
map statements on collections, where each operation has its own ambda parameter.

When nesting callbacks, or lambdas, you get a large number of braces ’{}’, each
forming a local scope. This, in turn, creates a structure called indentation hell — or
callback hell (when it’s specific to callbacks). A good example would be the fetching,
resizing and uploading images:

fun uploadImage(imagePath: String) {
 showLoadingSpinner()

 loadImage(imagePath) { image ->
 resizeImage(image) { resizedImage ->
 uploadImage(resizedImage) {
 hideLoadingSpinner()
 }
 }
 }
}

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 22

You show the upload spinner before the upload itself, as before. But, after you load
the image from a file, you proceed to resize it. Next, when you’ve resized the image
successfully, you start uploading it. Finally, once you manage to upload it, you hide
the loading spinner.

The first thing you notice is the amount of braces and indentation that form a stair-
like code structure. This makes the code very hard to read, and it’s not even a
complex operation. When building services on the web, nesting can easily reach 10
levels, if not more. Not only is the code hard to read, but it’s also extremely hard to
maintain such code. Because of the structure, you suffer from cognitive load, making
it harder to reason about the functionality and flow. Trying to add a step in between,
or change the lambda-result types, will break all the subsequent levels.

Additionally, some people find callbacks really hard to grasp at first. Their steep
learning curve, combined with the cognitive load and the lack of extensibility, make
people look elsewhere for a solution to asynchronous programming. This is where
reactive extensions come to life. You’ll see how they solve the nesting problem in
the next section.

Using reac7ve extensions for background
work
The most significant issue of a callback-based approach is passing the data from one
function to another. This results in nested callbacks, which are tough to read and
maintain.

If you think about the queues and pipes, they operate with streams of data, wherein
you can listen to the data as long as you need. Reactive extensions, or Rx, are built
upon the idea of having asynchronous operations wrapped up in streams of events.

Rx incorporates the observer pattern into helpful constructs. Furthermore, there
are a large number of operators that extend the behavior of observable streams,
allowing for clean and expressive data processing. You can subscribe to a stream of
events, map, filter, reduce and combine the events in numerous ways, as well as
handle errors in the entire chain of operations, using a single lambda function.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 23

The previous example of loading, uploading and resizing an image, using Rx, can be
represented as:

fun uploadImage(imagePath: String) {
 loadImage(imagePath)
 .doOnSubscribe(::showLoadingSpinner)
 .flatMap(::resizeImage)
 .flatMapCompletable(::uploadImage)
 .subscribe(::hideLoadingSpinner, ::handleError)
}

At first, this code might look weird. In reality, it’s a stream of data modified by using
a bunch of operators. It begins with the flatMap operator, which takes some data —
the image from loadImage() — and passes it to another function, creating a new
stream. Then, the new stream sends events in the form of resizedImage, which gets
passed to uploadImage(), using flatMapCompletable(), and operator chaining.

Finally, the uploadImage stream doesn’t pass data but, rather, completion events,
which tell you to hide the loading spinner when the upload has finished.

These streams of data and operations don’t actually get executed until someone
subscribes to them, using subscribe(onComplete, onError).

Additionally, doOnSubscribe() takes an action that the stream executes whenever
you subscribe to it. There are also functions like doOnSuccess and doOnError, which
propagate their respective events.

Further, it’s important to know that, if any error or exception occurs in any of the
operations in a chain, it’s not thrown, and the application doesn’t crash. Instead, the
stream passes it down the chain, finally reaching the onError lambda. Callbacks do
not have this behavior; they just throw the exception and you have to handle it
yourself, using try/catch blocks.

Reactive extensions are cleaner than callbacks when it comes to asynchronous
programming, but they also have a steeper learning curve.

With dozens of operators, different types of streams and a lot of edge cases with
switching between threads, it takes a large amount of time to fully understand them.

The learning curve, and a few other issues, will be discussed in the next section.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 24

Diving deeper into the complexity of Rx
Since this book isn’t about Rx, you’ll only have a narrow overview of its positive and
negative features. As seen before, Rx makes asynchronous programming clean and
readable. Further, in addition to the operators that allow for data processing, Rx is a
powerful mechanism. Moreover, the error handling concept of streams adds extra
safety to applications.

But Rx is not perfect. It has problems like any other framework, or paradigm, some of
which are showing up in the programming community lately.

To start, there is the learning curve. When you start learning Rx, you have to learn a
number of additional concepts, such as the observer pattern and streams. You will
also find that Rx is not just a framework; it brings a completely new paradigm called
reactive programming. Because of this, it’s very hard to start working with Rx. But
it’s even harder to grasp the finesse of using its operators. The amount of operators,
types of thread scheduling, and the combinations between the two, creates so many
options that it’s nearly impossible to know the full extent of Rx.

Another problematic issue with using Rx is the hype. Over the years, people have
moved towards Rx as a silver bullet for asynchronous operations.

This eventually led to such programming being Rx-driven, introducing even more
complexity to existing applications. Finding workarounds and using numerous
design patterns, just to make Rx work, introduced new layers of unwanted
complexity. Because of this, in Android, the Rx community has been debating if
programmers should represent things like network requests as streams of data
versus just a single event that they could handle using callbacks or something even
simpler.

The same debate transitions to navigation events, as an example. Should
programmers represent clicks as streams of events, too? The community opinion is
very divided on this topic.

So, with all this in mind, is there a better or simpler way to deal with asynchronicity?
Oddly enough, there’s a concept dating back decades, which has recently become a
hot topic.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 25

A blast from the past
This is a book about coroutines. They’re a mechanism dating back to the 1960’s,
depicting a unique way of handling asynchronous programming. The concept
revolves around the use of suspension points, suspendable functions and
continuations as first-class citizens in a language.

They’re a bit abstract, so it’s better to show an example:

fun fetchUser(userId: String) {
 val user = userService.getUser(userId) // 1

 print("Fetching user") // 2
 print(user.name) // 3
 print("Fetched user") // 4
}

Using the above code snippet, and revisiting what you learned about blocking calls,
you’d say that the execution order was 1, 2, 3 and 4. If you carefully look at the
code, you realize that this is not the only possible logical sequence. For instance, the
order between 1 and 2 is not important, nor is the order between 3 and 4. What is
important is that the user data is fetched before it is displayed; 1 must happen before
3. You can also delay the fetching of the user data to a convenient time before the
user data is actually displayed. Managing these issues in a transparent way is the
black magic of coroutines!

They’re a part-thread, part-callback mechanism, which use the system’s power of
scheduling and suspending work. This way, you can immediately return a result from
a call without using callbacks, threads or streams. Think of it this way, once you start
a coroutine, or call a suspendable function, it gets nicely wrapped up and prepared
like a taco. But, until you want to eat the taco, the code inside might not get
executed.

Explaining corou7nes: The inner works
It’s not really black magic — only a smart way of using low-level processing.
getUser() is marked as a suspendable function, meaning the system prepares the
call in the background, and you get an unfinished, wrapped taco. But it might not
execute the function yet. The system moves it to a thread pool, where it waits for
further commands. Once you’re ready to eat the taco and you request the result, the
program can block until you get a ready-to-go snack, or suspend and wait for it
within the coroutine.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 26

Knowing this, the program can skip over the rest of the function code, until it
reaches the first line of code on which it uses the user. This is called awaiting the
result. At that point, it executes getUser() and if it hasn’t already, suspends the
program.

This means you can do as much processing as you want, in between the call itself
and using its result. Because the compiler knows suspension points and suspendable
functions are asynchronous and treats their execution sequentially, you can write
understandable and clean code. This makes your code very extensible and easy to
maintain.

Since writing asynchronous code is so simple with coroutines, you can easily
combine multiple requests or transformations of data. No more staircases, strange
stream mapping to pass the data around, or complex operators to combine or
transform the result. All you need to do is mark functions as suspendable, and call
them in a coroutine block.

Another, extremely important thing to note about coroutines is that they’re not
threads. They are a low-level mechanism that utilizes thread pools to shuffle work
between multiple, existing threads. This allows you to create millions of coroutines,
without overflowing memory. A million threads would take so much memory, even
today’s state-of-the-art computers would crash.

Although many languages support coroutines, each has a different implementation.

Varia7ons through history
As mentioned, coroutines are a dated but powerful concept. Throughout the years,
several programming languages have evolved their versions of the implementation.
For example, in languages like Python and Smalltalk, coroutines are first-class
citizens, and can be used without an external library.

A generator in Python would look like this:

def coroutine():
 while True:
 value = yield
 print(’Received a value:’, value)

This code defines a function, which loops forever, listening and printing any
arguments you send to it. The concept of an infinite loop, which listens for data is
called a generator. The keyword yield is what triggers the generator, receiving the

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 27

value. As you can see, there’s a while True statement in the function. In regular
code, this would create a standard infinite loop, effectively blocking the program,
since there’s no exit condition. But this is a coroutine-powered call, so it waits in the
background until you send some value to the function, which is why it doesn’t block.

Another language with first-class coroutines is C#. In C#, there’s support for the
yield statement, like in Python, but also for async and await calls, like this:

MyResult result = await AsyncMethodThatReturnsAResult();

await AsyncMethodWithoutAResult();

By adding the await keyword, you can return an asynchronous result, using normal,
sequential code. It’s pretty much what you saw in the example above, where you first
learned about coroutines.

Both Python and C# have first-class support for coroutines. By including them in the
language itself, it allows you to make asynchronous calls without including a third-
party framework. Many other programming languages utilize external libraries in
order to support programming with coroutines. Kotlin also has coroutine support in
its standard library. Additionally, the way Kotlin coroutines are built using global and
extension functions with receivers, makes them very extensible. You can also create
your own APIs by building on top of the existing functions.

You’ll see how to do this in the next chapters of the book.

Key points
• Multithreading allows you to run multiple tasks in parallel.

• Asynchronous programming is a common pattern for thread communication.

• There are different mechanisms for sharing data between threads, some of which
are queues and pipelines.

• Most mechanisms rely on a push-pull tactic, blocking threads when there is too
much, or not enough data, to process

• Callbacks are a complex, hard-to-maintain and cognitive-load-heavy mechanism.

• It’s easy to reach callback hell when doing complex operations using callbacks.

• Reactive extensions provide clean solutions for data transformation,
combination and error handling.

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 28

• Rx can be too complex, and doesn’t fit all applications.

• Coroutines are an established, and reliable concept, based on low-level
scheduling.

• Too many threads can take up a lot of memory, ultimately crashing your program
or computer.

• Coroutines don’t always create new threads, they can reuse existing ones from
thread pools.

• It’s possible to have asynchronous code, written in a clean, sequential style, using
coroutines.

Where to go from here?
Well that was a really brief overview of the history and theory behind asynchronous
programming and coroutines.

If you’re excited about seeing some code and Kotlin’s coroutines, in the next section
of the book you’ll learn about suspendable functions and suspension points.
Moreover, you’ll see how coroutines are created in Kotlin, using coroutine builders.
Next, you’ll build asynchronous calls, which return some data with the async
function, and see how you await the result. And, finally, you’ll learn about jobs and
their children, in coroutines.

You’ll cover the entire base API for Kotlin Coroutines, learn how to wrap
asynchronous calls into async blocks, how to combine multiple operations and how
to build Jobs which have multiple layers of coroutines.

But before that, you have to set up your build environment, so let’s get going!

Kotlin Coroutines by Tutorials Sample Chapter 1: What Is Asynchronous Programming?

raywenderlich.com 29

WWhere to Go From Here?

We hope you enjoyed this sample of Kotlin Coroutines by Tutorials!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

• Chapter 1: What Is Asynchronous Programming?: In this very first chapter,
you’ll learn what asynchronous programming means and why a modern developer
should understand it. You’ll see the basics of multithreading like queue and shared
memory and you’ll understand how to solve the "Indentation Hell Problem".

• Chapter 2: Setting Up Your Build Environments: Learning through example is
one of the most efficient ways to gain more skills. To do this, you need to set up
your build environment and learn how to load the starting projects with IntelliJ or
Android Studio. This chapter describes all you need to start writing your code.

• Chapter 3: Getting Started with Coroutines: This is the chapter where you’ll
learn the main concepts about coroutines like builders, scope and context. You’ll
see for the first time the Job object and learn how to manage dependencies
between coroutines. You’ll understand and write code to manage one of the most
important features of asynchronous tasks: cancellations.

• Chapter 4: Suspending Functions: To understand how to use coroutines you
need to learn what a suspending function is and how to implement it. In this
chapter, you’ll learn all you need to create and use your suspending functions.
You’ll also learn how to change your existing functions to use them in a coroutine.

raywenderlich.com 30

• Chapter 5: Async/Await: In multithreading and asynchronous development in
Java, you often use Runnable, Callable and Future. With coroutines, you can use
Deferred instead. These are objects that you can manage using the async/await
functions. In this chapter, you’ll write code to understand when and how to use
this pattern most effectively.

• Chapter 6: Coroutine Context: This chapter is about one of the most important
concepts about coroutines: Coroutine Context. You'll learn what it is and how this
is related to the dependencies between different coroutine jobs. You'll also learn
how to create your context.

• Chapter 7: Context Switch & Dispatching: In this chapter, you'll learn how to
run different Jobs into the proper thread. You'll learn how to configure and use the
proper thread to display information on the UI or to invoke different services on
the network.

• Chapter 8: Exception Handling: Using functions with a callback is not difficult
only because of the indentation hell problem but also for error and exception
handling. In this very important chapter, you’ll learn, with several examples, all
the techniques you can use to handle exceptions.

• Chapter 9: Manage Cancellation: One of the most important topics to master
when you deal with multithreading is a cancellation. Starting a thread is very easy
compared to the techniques used to cancel it leaving the system in a consistent
state. In this very important chapter, you’ll learn, with several examples, all the
techniques you can use to manage cancellations.

• Chapter 10: Building Sequences & Iterators with Yield: Sequences are one of
the most interesting features of Kotlin because they allow generating values lazily.
When you implement a sequence you use the yield function which is a suspending
function. In this chapter, you’ll learn how to create sequences and how the yield
function can be used to optimize performance.

• Chapter 11: Channels: Although experimental, channels are a very important
API you can use with coroutines. In this chapter, you’ll create examples to
understand what a channel is and how to act as a producer or consumer for it
synchronously and asynchronously. You’ll understand how to use multiple
channels in the case of multiple senders and receivers. You’ll finally compare
channels with Java’s BlockingQueue

• Chapter 12: Broadcast Channels: In this chapter, you’ll write many examples to
experiment with using channels with multiple receivers and emitted items need to
be shared by all of them.

Kotlin Coroutines by Tutorials Sample Where to Go From Here?

raywenderlich.com 31

• Chapter 13: Producer & Actors: In this chapter, you’ll learn how coroutines can
help implement a producer/consumer pattern using different types of producers
and consumers. Another approach to running tasks in the background is to use the
actors model. In the second part of this chapter, you’ll learn what an Actor is and
how you can use it with coroutines.

• Chapter 14: Beginning with Coroutine Flow: In this chapter, you'll learn what
Coroutine Flow is and how to use them in your project.

• Chapter 15: Testing Coroutines: Testing is a fundamental part of the
development process and coroutines are not different. In this chapter, you'll learn
how to test coroutines using the main testing frameworks.

• Chapter 16: Android Concurrency Before Coroutines: The Android platform
allows you to run background tasks in many different ways. In this chapter, you’ll
see and implement examples for all of them. You’ll learn what Looper and Handler
are and when to use an AsyncTask. You’ll finally see how coroutines can make the
code more readable and efficient.

• Chapter 17: Coroutine on Android - Part 1: The chapter covers using Kotlin
Coroutines in an Android app, covering working with various context i.e. UI and
background to simplify and manage code sequentially. It will cover converting
async callbacks for long-running tasks, such as a database or network access into
sequential tasks while also keeping track and handling of the app lifecycle.

• Chapter 18: Coroutine on Android - Part 2: The chapter covers fortifying the
use of Kotlin Coroutines in an Android app i.e. Enabling logging, exception
handling, debugging and testing of code that uses Kotlin Coroutines. Towards the
end, Anko library will also be covered.

You can find the book on the raywenderlich.com store here: https://
store.raywenderlich.com/products/kotlin-coroutines-by-tutorials

We hope you enjoy the book!

— The Kotlin Coroutines by Tutorials Team

Kotlin Coroutines by Tutorials Sample Where to Go From Here?

raywenderlich.com 32

	About This Book Sample
	What You Need
	Book License
	Book Source Code & Forums
	Chapter 1: What Is Asynchronous Programming?
	Providing feedback
	Why multithreading?
	Interacting with the UI thread from the background
	Handling work completion using callbacks
	Indentation hell
	Using reactive extensions for background work
	Diving deeper into the complexity of Rx
	A blast from the past
	Explaining coroutines: The inner works
	Variations through history
	Key points
	Where to go from here?

	Where to Go From Here?

