

Combine: Asynchronous Programming with
Swift
By Scott Gardner, Shai Mishali, Florent Pillet & Marin Todorov

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

Combine

raywenderlich.com 2

About the Authors
Scott Gardner is an author and the technical editor for this book.
Combined, he’s authored over a dozen books, video courses,
tutorials, and articles on Swift and iOS app development — with a
focus on reactive programming. He’s also presented at numerous
conferences. Additionally, Scott teaches app development and is an
Apple Certified Trainer for Swift and iOS. Scott has been
developing iOS apps since 2010, ranging from personal apps that
have won awards to working on enterprise teams developing apps
that serve millions of users. You can find Scott on Twitter or
GitHub as @scotteg or connect with him on LinkedIn at
scotteg.com.

Shai Mishali is an author and the final pass editor on this book.
He's the iOS Tech Lead for Gett, the global on-demand mobility
company; as well as an international speaker, and a highly active
open-source contributor and maintainer on several high-profile
projects - namely, the RxSwift Community and RxSwift projects,
but also releases many open-source endeavors around Combine
such as CombineCocoa, RxCombine and more. As an avid
enthusiast of hackathons, Shai took 1st place at BattleHack Tel-
Aviv 2014, BattleHack World Finals San Jose 2014, and Ford's
Developer Challenge Tel-Aviv 2015. You can find him on GitHub
and Twitter as @freak4pc.

Florent Pillet is an author of this book. He has been developing for
mobile platforms since the last century and moved to iOS on day 1.
He adopted reactive programming before Swift was announced,
using it in production since 2015. A freelance developer, Florent
also uses reactive programming on the server side as well as on
Android and likes working on tools for developers like the popular
NSLogger when he's not contracting, training or reviewing code for
clients worldwide. Say hello to Florent on Twitter and GitHub at
@fpillet.

Combine

raywenderlich.com 3

Marin Todorov is an author of this book. Marin is one of the
founding members of the raywenderlich.com team and has worked
on eight of the team’s books. He's an independent contractor and
has worked for clients like Roche, Realm, and others. Besides
crafting code, Marin also enjoys blogging, teaching and speaking at
conferences. He happily open-sources code. You can find out more
about Marin at www.underplot.com.

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

Combine

raywenderlich.com 4

Dedications
"To Jenn, for being so supportive and encouraging. To

Charlotte, keep up the great work in school — you motivate
me! To Betty, my best l’il friend for all her 18 years. And to

you, the reader — you make this work meaningful and
fulfilling."

— Scott Gardner

"For my wife Elia and Baby Ethan—my love, inspiration, and

rock ❤ . To my family and friends for their support: Dad,

Mom, Ziv, Adam, and everyone else, you’re the best!"

— Shai Mishali

"To Fabienne and Alexandra ❤ ."

— Florent Pillet

"To my father. To my mom. To Mirjam and our beautiful
daughter."

— Marin Todorov

Combine

raywenderlich.com 5

Table of Contents: Overview
Book License 8..

About This Book Sample 9...

Book Source Code & Forums 10...

What You Need 12..

Chapter 2: Publishers & Subscribers 13..

Conclusion 43...

Combine

raywenderlich.com 6

Table of Contents: Extended
Book License 8.

About This Book Sample 9.

Book Source Code & Forums 10.

What You Need 12.

Chapter 2: Publishers & Subscribers 13.
Getting started 13.

Hello Publisher 14.

Hello Subscriber 16.

Hello Cancellable 19.

Understanding what’s going on 20.

Creating a custom subscriber 24.

Hello Future 26.

Hello Subject 29.

Dynamically adjusting demand 35.

Type erasure 37.

Challenge 38.

Key points 41.

Where to go from here? 41.

Conclusion 43.

Combine

raywenderlich.com 7

LBook License

By purchasing Combine: Asynchronous Programming with Swift, you have the
following license:

• You are allowed to use and/or modify the source code in Combine: Asynchronous
Programming with Swift in as many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in Combine: Asynchronous Programming with Swift in as many apps as you want, but
must include this attribution line somewhere inside your app: “Artwork/images/
designs: from Combine: Asynchronous Programming with Swift, available at
www.raywenderlich.com”.

• The source code included in Combine: Asynchronous Programming with Swift is for
your personal use only. You are NOT allowed to distribute or sell the source code in
Combine: Asynchronous Programming with Swift without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action or contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 8

AAbout This Book Sample

In Apple's own words: "The Combine framework provides a declarative approach for how
your app processes events. Rather than potentially implementing multiple delegate
callbacks or completion handler closures, you can create a single processing chain for a
given event source. Each part of the chain is a Combine operator that performs a distinct
action on the elements received from the previous step."

Although very accurate and to the point, this delightful definition might sound a
little too abstract at first. That's why, before delving into coding exercises and
working on projects in the following chapters, you'll take a little time to learn a bit
about the problems Combine solves and the tools it uses to do so.

We are pleased to offer you this sample from the full Combine: Asynchronous
Programming with Swift book that will introduce you to these concepts and give you a
chance to practice them in our hands-on, step-by-step style.

This sample includes:

Chapter 2: Publishers & Subscribers: The essence of Combine is that publishers
send values to subscribers. In this chapter you’ll learn all about what that means and
how to work with publishers and subscribers, and how to manage the subscriptions
that are created between the two of them.

You can get the the complete Combine: Asynchronous Programming with Swift book
here:

• https://store.raywenderlich.com/products/combine-asynchronous-programming-
with-swift.

The Combine: Asynchronous Programming with Swift Team

raywenderlich.com 9

BBook Source Code &
Forums

If you bought the digital edition
This book comes with the source code for the starter and completed projects for each
chapter. These resources are shipped with the digital edition you downloaded here:

• https://store.raywenderlich.com/products/combine-asynchronous-programming-
with-swift.

If you bought the print version
You can get the source code for the print edition of the book here: https://
store.raywenderlich.com/products/combine-asynchronous-programming-with-
swift-source-code.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

Forums
We’ve also set up an official forum for the book here:

• https://forums.raywenderlich.com.

This is a great place to ask questions about the book or to submit any errors you may
find.

raywenderlich.com 10

Digital book editions
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

Visit our book store page here:

• https://store.raywenderlich.com/products/combine-asynchronous-programming-
with-swift.

Combine Book Source Code & Forums

raywenderlich.com 11

WWhat You Need

To follow along with this book, you’ll need the following:

• A Mac running macOS Mojave (10.14) or later. Earlier versions might work, but
they're untested.

• Xcode 11 or later. Xcode is the main development tool for iOS. You’ll need Xcode
11 or later for the tasks in this book, since Combine was introduced with the iOS 13
SDK. You can download the latest version of Xcode from Apple’s developer site
here: apple.co/2asi58y

• An intermediate level knowledge of Swift. This book teaches you how to write
declarative and reactive iOS applications using Apple's Combine framework.
Combine uses a multitude of advanced Swift features such as generics, so you
should have at least an intermediate-level knowledge of Swift.

If you want to try things out on a physical iOS device, you’ll need a developer
account with Apple, which you can obtain for free. However, all the sample projects
in this book will work just fine in the iOS Simulator bundled with Xcode, so a paid
developer account is completely optional.

raywenderlich.com 12

2Chapter 2: Publishers &
Subscribers
By Scott Gardner

Now that you’ve learned some of the basic concepts of Combine, it’s time to jump in
and play with two of Combine’s core components — publishers and subscribers.

In this chapter, you’ll review several examples of creating publishers and subscribing
to those publishers using subscribers. By doing so, you’ll acquire important skills
that you’ll use throughout the rest of this book and beyond.

Getting started

Note: There are starter and final versions of the playgrounds and projects
you’ll use in each chapter throughout the book. The starter will be prepared
and ready for you to enter the code specified for each example and challenge.
You can compare your work with the final version at the end or along the way
if you get stuck.

For this chapter, you’ll use an Xcode playground with Combine imported. Open
Starter.playground in the projects folder and you’ll see the following:

raywenderlich.com 13

Open Sources in the Project navigator (View ▸ Navigators ▸ Show Project
Navigator and twist down the Combine playground page), and select
SupportCode.swift. It contains the following helper function example(of:):

public func example(of description: String,
 action: () -> Void) {
 print("\n——— Example of:", description, "———")
 action()
}

You’ll use this function to encapsulate some examples you’ll use throughout this
book.

However, before you begin playing with those examples, you first need to learn about
publishers, subscribers and subscriptions. They form the foundation of Combine and
enable you to send and receive data, typically asynchronously.

Hello Publisher
At the heart of Combine is the Publisher protocol. This protocol defines the
requirements for a type to be able to transmit a sequence of values over time to one
or more subscribers. In other words, a publisher publishes or emits events that can
include values of interest.

If you’ve developed on Apple platforms before, you can think of a publisher as a kind
of notification center. In fact, NotificationCenter now has a method named
publisher(for:object:) that provides a Publisher type that can publish
broadcasted notifications.

To check this out, go back to the starter playground and replace the Add your code
here placeholder with the following code:

example(of: "Publisher") {
 // 1
 let myNotification = Notification.Name("MyNotification")

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 14

 // 2
 let publisher = NotificationCenter.default
 .publisher(for: myNotification, object: nil)
}

In this code, you:

1. Create a notification name.

2. Access notification center’s default center, call its publisher(for:object:)
method and assign its return value to a local constant.

Option-click on publisher(for:object:), and you’ll see that it returns a
Publisher that emits an event when the default notification center broadcasts a
notification.

So what’s the point of publishing notifications when a notification center is already
capable of broadcasting its notifications without a publisher? Glad you asked!

You can think of these types of methods as a bridge from the old to the new — a way
to Combine-ify existing APIs such as NotificationCenter.

A publisher emits two kinds of events:

1. Values, also referred to as elements.

2. A completion event.

A publisher can emit zero or more values but only one completion event, which can
either be a normal completion event or an error. Once a publisher emits a completion
event, it’s finished and can no longer emit any more events.

Before diving deeper into publishers and subscribers, you’ll first finish the example
of using traditional notification center APIs to receive a notification by registering an
observer. You’ll also unregister that observer when you’re no longer interested in
receiving that notification.

Add the following code to the end of the previous example:

// 3
let center = NotificationCenter.default

// 4
let observer = center.addObserver(
 forName: myNotification,
 object: nil,
 queue: nil) { notification in
 print("Notification received!")

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 15

}

// 5
center.post(name: myNotification, object: nil)

// 6
center.removeObserver(observer)

With this code, you:

3. Get a handle to the default notification center.

4. Create an observer to listen for the notification with the name you previously
created.

5. Post a notification with that name.

6. Remove the observer from the notification center.

Run the playground. You’ll see this output printed to the console:

——— Example of: Publisher ———
Notification received!

The example title is a little misleading because the output is not actually coming
from a publisher. For that to happen, you need a subscriber.

Hello Subscriber
Subscriber is a protocol that defines the requirements for a type to be able to
receive input from a publisher. You’ll dive deeper into conforming to the Publisher
and Subscriber protocols shortly; for now, you’ll focus on the basic flow.

Start by replacing the previous notification handling code with a subscription. Add a
new example to the playground that begins like the previous one:

example(of: "Subscriber") {
 let myNotification = Notification.Name("MyNotification")

 let publisher = NotificationCenter.default
 .publisher(for: myNotification, object: nil)

 let center = NotificationCenter.default
}

If you were to post a notification now, the publisher wouldn’t emit it — and that’s an

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 16

important distinction to remember. A publisher only emits an event when there’s at
least one subscriber.

Subscribing with sink(_:_:)
Continuing the previous example, add the following code to the example to create a
subscription to the publisher:

let subscription = publisher
 .sink { _ in
 print("Notification received from a publisher!")
 }

With this code, you create a subscription by calling sink on the publisher — but
don’t let the obscurity of that method name give you a sinking feeling. Option-click
on sink and you’ll see that it simply provides an easy way to attach a subscriber with
closures to handle output from a publisher. In this example, you ignore those
closures and instead just print a message to indicate that a notification was received.

The sink operator will continue to receive as many values as the publisher emits.
This is known as unlimited demand, which you’ll learn more about shortly. And
although you ignored them in the previous example, the sink operator actually
provides two closures: one handle receiving a completion event, and one to handle
received values.

To see how this works, add this new example to your playground:

example(of: "Just") {
 // 1
 let just = Just("Hello world!")

 // 2
 _ = just
 .sink(
 receiveCompletion: {
 print("Received completion", $0)
 },
 receiveValue: {
 print("Received value", $0)
 })
}

Here, you:

1. Create a publisher using Just, which lets you create a publisher from a primitive
value type.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 17

2. Create a subscription to the publisher and print a message for each received
event.

Run the playground. You’ll see the following:

——— Example of: Just ———
Received value Hello world!
Received completion finished

Option-click on Just and the Quick Help explains that it’s a publisher that emits its
output to each subscriber once and then finishes.

Try adding another subscriber by adding the following code to the end of your
example:

_ = just
 .sink(
 receiveCompletion: {
 print("Received completion (another)", $0)
 },
 receiveValue: {
 print("Received value (another)", $0)
 })

Run the playground. True to its word, a Just happily emits its output to each new
subscriber exactly once and then finishes.

Received value (another) Hello world!
Received completion (another) finished

Subscribing with assign(to:on:)
In addition to sink, the built-in assign(to:on:) operator enables you to assign the
received value to a KVO-compliant property of an object.

Add this example to see how this works:

example(of: "assign(to:on:)") {
 // 1
 class SomeObject {
 var value: String = "" {
 didSet {
 print(value)
 }
 }
 }

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 18

 // 2
 let object = SomeObject()

 // 3
 let publisher = ["Hello", "world!"].publisher

 // 4
 _ = publisher
 .assign(to: \.value, on: object)
}

From the top:

1. Define a class with a property that has a didSet property observer that prints the
new value.

2. Create an instance of that class.

3. Create a publisher from an array of strings.

4. Subscribe to the publisher, assigning each value received to the value property of
the object.

Run the playground and you will see printed:

——— Example of: assign(to:on:) ———
Hello
world!

You’ll focus on using the sink operator for now — but fear not, you’ll get more
hands-on practice using assign beginning in Chapter 8, "In Practice: Project
"Collage"."

Hello Cancellable
When a subscriber is done and no longer wants to receive values from a publisher,
it’s a good idea to cancel the subscription to free up resources and stop any
corresponding activities from occurring, such as network calls.

Subscriptions return an instance of AnyCancellable as a "cancellation token," which
makes it possible to cancel the subscription when you’re done with it.
AnyCancellable conforms to the Cancellable protocol, which requires the
cancel() method exactly for that purpose.

Finish the Subscriber example from earlier by adding the following code:

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 19

// 1
center.post(name: myNotification, object: nil)

// 2
subscription.cancel()

With this code, you:

1. Post a notification (same as before).

2. Cancel the subscription. You’re able to call cancel() on the subscription because
the Subscription protocol inherits from Cancellable.

Run the playground. You’ll see the following:

——— Example of: Subscriber ———
Notification received from a publisher!

If you don’t explicitly call cancel() on a subscription, it will continue until the
publisher completes, or until normal memory management causes a stored
subscription to be deinitialized. At that point it will cancel the subscription for you.

Note: It’s also fine to ignore the return value from a subscription in a
playground (for example, _ = just.sink...). However, one caveat: if you
don’t store a subscription in full projects, that subscription will cancel as soon
as the program flow exits the scope in which it was created!

These are good examples to start with, but there’s a lot more going on behind the
scenes. It’s time to lift the curtain and learn more about the roles of publishers,
subscribers and subscriptions in Combine.

Understanding what’s going on
They say a picture is worth a thousand words, so let’s kick things off with one to
explain the interplay between publishers and subscribers:

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 20

Walking through this UML diagram:

1. The subscriber subscribes to the publisher.

2. The publisher creates a subscription and gives it to the subscriber.

3. The subscriber requests values.

4. The publisher sends values.

5. The publisher sends a completion.

Note: The above diagram provides a streamlined overview of what’s going on.
What you’ll learn here is enough to get you started working with Combine.
You’ll gain a deeper understanding of this process in Chapter 18, “Custom
Publishers and Handling Backpressure.”

Take a look at the Publisher protocol and one of its most crucial extensions:

public protocol Publisher {
 // 1
 associatedtype Output

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 21

 // 2
 associatedtype Failure : Error

 // 4
 func receive<S>(subscriber: S)
 where S: Subscriber,
 Self.Failure == S.Failure,
 Self.Output == S.Input
}

extension Publisher {
 // 3
 public func subscribe<S>(_ subscriber: S)
 where S : Subscriber,
 Self.Failure == S.Failure,
 Self.Output == S.Input
}

Here’s a closer look:

1. The type of values that the publisher can produce.

2. The type of errors that a publisher may produce; or Never if the publisher is
guaranteed to not produce errors.

3. A subscriber calls subscribe(_:) on a publisher to attach to it.

4. The implementation of subscribe(_:) will call receive(subscriber:) to
attach the subscriber to the publisher, i.e., create a subscription.

The associated types are the publisher’s interface that a subscriber must match in
order to create a subscription.

Now, look at the Subscriber protocol:

public protocol Subscriber: CustomCombineIdentifierConvertible {
 // 1
 associatedtype Input

 // 2
 associatedtype Failure: Error

 // 3
 func receive(subscription: Subscription)

 // 4
 func receive(_ input: Self.Input) -> Subscribers.Demand

 // 5
 func receive(completion: Subscribers.Completion<Self.Failure>)

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 22

}

Here’s a closer look:

1. The type of values a subscriber can receive.

2. The type of errors a subscriber can receive; or Never if the subscriber won’t
receive errors.

3. The publisher calls receive(subscription:) on the subscriber to give it the
subscription.

4. The publisher calls receive(_:) on the subscriber to send it a new value that it
just published.

5. The publisher calls receive(completion:) on the subscriber to tell it that it has
finished producing values, either normally or due to an error.

The connection between the publisher and the subscriber is the subscription. Here’s
the Subscription protocol:

public protocol Subscription: Cancellable,
CustomCombineIdentifierConvertible {
 func request(_ demand: Subscribers.Demand)
}

The subscriber calls request(_:) to indicate it is willing to receive more values, up
to a max number or unlimited.

Note: The concept of a subscriber stating how many values it’s willing to
receive is known as backpressure management. Without it, or some other
strategy, a subscriber could get flooded with more values from the publisher
than it can handle, and this can lead to problems. Backpressure is also covered
in depth in Chapter 18, "Custom Publishers and Handling Backpressure."

In Subscriber, notice that receive(_:) returns a Demand. Even though the max
number of values a subscriber is willing to receive is specified when initially calling
subscription.request(_:) in receive(_:), you can adjust that max each time a
new value is received.

Note: Adjusting max in Subscriber.receive(_:) is additive, i.e., the new max

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 23

value is added to the current max. The max value must be positive, and passing
a negative value will result in a fatalError. This means that you can increase
the original max each time a new value is received, but you cannot decrease it.

Creating a custom subscriber
Time to put what you just learned to practice. Add this new example to your
playground:

example(of: "Custom Subscriber") {
 // 1
 let publisher = (1...6).publisher

 // 2
 final class IntSubscriber: Subscriber {
 // 3
 typealias Input = Int
 typealias Failure = Never

 // 4
 func receive(subscription: Subscription) {
 subscription.request(.max(3))
 }

 // 5
 func receive(_ input: Int) -> Subscribers.Demand {
 print("Received value", input)
 return .none
 }

 // 6
 func receive(completion: Subscribers.Completion<Never>) {
 print("Received completion", completion)
 }
 }
}

What you do here is:

1. Create a publisher of integers via the range’s publisher property.

2. Define a custom subscriber, IntSubscriber.

3. Implement the type aliases to specify that this subscriber can receive integer
inputs and will never receive errors.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 24

4. Implement the required methods, beginning with receive(subscription:),
which is called by the publisher; and in that method, call .request(_:) on the
subscription specifying that the subscriber is willing to receive up to three values
upon subscription.

5. Print each value as it’s received and return .none, indicating that the subscriber
will not adjust its demand; .none is equivalent to .max(0).

6. Print the completion event.

For the publisher to publish anything, it needs a subscriber. Add the following at the
end of the example:

let subscriber = IntSubscriber()

publisher.subscribe(subscriber)

In this code, you create a subscriber that matches the Output and Failure types of
the publisher. You then tell the publisher to subscribe, or attach, the subscriber.

Run the playground. You’ll see the following printed to the console:

——— Example of: Custom Subscriber ———
Received value 1
Received value 2
Received value 3

You did not receive a completion event. This is because the publisher has a finite
number of values, and you specified a demand of .max(3).

In your custom subscriber’s receive(_:), try changing .none to .unlimited, so
your receive(_:) method looks like this:

func receive(_ input: Int) -> Subscribers.Demand {
 print("Received value", input)
 return .unlimited
}

Run the playground again. This time you’ll see that all of the values are received and
printed, along with the completion event:

——— Example of: Custom Subscriber ———
Received value 1
Received value 2
Received value 3
Received value 4
Received value 5

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 25

Received value 6
Received completion finished

Try changing .unlimited to .max(1) and run the playground again.

You’ll see the same output as when you returned .unlimited, because each time you
receive an event, you specify that you want to increase the max by 1.

Change .max(1) back to .none, and change the definition of publisher to an array
of strings instead. Replace:

let publisher = (1...6).publisher

With:

let publisher = ["A", "B", "C", "D", "E", "F"].publisher

Run the playground. You get an error that the subscribe method requires types
String and IntSubscriber.Input (i.e., Int) to be equivalent. You get this error
because the Output and Failure associated types of a publisher must match the
Input and Failure types of a subscriber in order for a subscription between the two
to be created.

Change the publisher definition back to its original range of integers to resolve the
error.

Hello Future
Much like you can use Just to create a publisher that emits a single value to a
subscriber and then complete, a Future can be used to asynchronously produce a
single result and then complete. Add this new example to your playground:

example(of: "Future") {
 func futureIncrement(
 integer: Int,
 afterDelay delay: TimeInterval) -> Future<Int, Never> {

 }
}

Here, you create a factory function that returns a future of type Int and Never;
meaning, it will emit an integer and never fail.

You also add a subscriptions set in which you’ll store the subscriptions to the

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 26

future in the example. For long-running asynchronous operations, not storing the
subscription will result in the cancelation of the subscription as soon as the current
code scope ends. In the case of a Playground, that would be immediately.

Next, fill the function’s body to create the future:

Future<Int, Never> { promise in
 DispatchQueue.global().asyncAfter(deadline: .now() + delay) {
 promise(.success(integer + 1))
 }
}

This code defines the future, which creates a promise that you then execute using the
values specified by the caller of the function to increment the integer after the
delay.

A Future is a publisher that will eventually produce a single value and finish, or it
will fail. It does this by invoking a closure when a value or error is made available,
and that closure is referred to as a promise. Command-click on Future and choose
Jump to Definition. You’ll see the following:

final public class Future<Output, Failure> : Publisher
 where Failure: Error {
 public typealias Promise = (Result<Output, Failure>) -> Void
 ...
}

Promise is a type alias to a closure that receives a Result containing either a single
value published by the Future, or an error.

Head back to the main playground page, and add the following code after the
definition of futureIncrement:

// 1
let future = futureIncrement(integer: 1, afterDelay: 3)

// 2
future
 .sink(receiveCompletion: { print($0) },
 receiveValue: { print($0) })
 .store(in: &subscriptions)

Here, you:

1. Create a future using the factory function you created earlier, specifying to
increment the integer you passed after a three-second delay.

2. Subscribe to and print the received value and completion event, and store the

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 27

resulting subscription in the subscriptions set. You’ll learn more about storing
subscriptions in a collection later in this chapter, so don’t worry if you don’t
entirely understand that portion of the example.

Run the playground. You’ll see the example title printed, followed by the output of
the future after a three-second delay:

——— Example of: Future ———
2
finished

Add a second subscription to the future by entering the following code in the
playground:

future
 .sink(receiveCompletion: { print("Second", $0) },
 receiveValue: { print("Second", $0) })
 .store(in: &subscriptions)

Before running the playground, insert the following print statement immediately
before the DispatchQueue block in the futureIncrement function:

print("Original")

Run the playground. After the specified delay, the second subscription receives the
same value. The future does not re-execute its promise; instead, it shares or replays
its output.

——— Example of: Future ———
Original
2
finished
Second 2
Second finished

Also, Original is printed right away before the subscriptions occur. This happens
because a future executes as soon as it is created. It does not require a subscriber like
regular publishers.

In the last few examples, you’ve been working with publishers that have a finite
number of values to publish, which are sequentially and synchronously published.

The notification center example you started with is an example of a publisher that
can keep on publishing values indefinitely and asynchronously, provided:

1. The underlying notification sender emits notifications.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 28

2. There are subscribers to the specified notification.

What if there was a way that you could do the same thing in your own code? Well, it
turns out, there is! Before moving on, comment out the entire "Future" example, so
the future isn’t invoked every time you run the playground — otherwise its delayed
output will be printed after the last example.

Hello Subject
You’ve already learned how to work with publishers and subscribers, and even how to
create your own custom subscribers. Later in the book, you’ll learn how to create
custom publishers. For now, though, there’s just a couple more things standing
between you and a well-deserved <insert your favorite beverage> break. First
is a subject.

A subject acts as a go-between to enable non-Combine imperative code to send
values to Combine subscribers. That <favorite beverage> isn’t going to drink
itself, so it’s time to get to work!

Add this new example to your playground:

example(of: "PassthroughSubject") {
 // 1
 enum MyError: Error {
 case test
 }

 // 2
 final class StringSubscriber: Subscriber {
 typealias Input = String
 typealias Failure = MyError

 func receive(subscription: Subscription) {
 subscription.request(.max(2))
 }

 func receive(_ input: String) -> Subscribers.Demand {
 print("Received value", input)
 // 3
 return input == "World" ? .max(1) : .none
 }

 func receive(completion: Subscribers.Completion<MyError>) {
 print("Received completion", completion)
 }
 }

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 29

 // 4
 let subscriber = StringSubscriber()
}

With this code, you:

1. Define a custom error type.

2. Define a custom subscriber that receives strings and MyError errors.

3. Adjust the demand based on the received value.

4. Create an instance of the custom subscriber.

Returning .max(1) in receive(_:) when the input is "World" results in the new
max being set to 3 (the original max plus 1).

Other than defining a custom error type and pivoting on the received value to adjust
demand, there’s nothing new here. Here comes the more interesting part.

Add this code to the example:

// 5
let subject = PassthroughSubject<String, MyError>()

// 6
subject.subscribe(subscriber)

// 7
let subscription = subject
 .sink(
 receiveCompletion: { completion in
 print("Received completion (sink)", completion)
 },
 receiveValue: { value in
 print("Received value (sink)", value)
 }
)

This code:

5. Creates an instance of a PassthroughSubject of type String and the custom
error type you defined.

6. Subscribes the subscriber to the subject.

7. Creates another subscription using sink.

Passthrough subjects enable you to publish new values on demand. They will happily
pass along those values and a completion event. As with any publisher, you must

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 30

declare the type of values and errors it can emit in advance; subscribers must match
those types to its input and failure types in order to subscribe to that passthrough
subject.

Now that you’ve created a passthrough subject that can send values and
subscriptions to receive them, it’s time to send some values. Add the following code
to your example:

subject.send("Hello")
subject.send("World")

This sends two values (one at a time) using the subject’s send method.

Run the playground. You’ll see:

——— Example of: PassthroughSubject ———
Received value Hello
Received value (sink) Hello
Received value World
Received value (sink) World

Each subscriber receives the values as they’re published.

Add the following code:

// 8
subscription.cancel()

// 9
subject.send("Still there?")

Here, you:

8. Cancel the second subscription.

9. Send another value.

Run the playground. As you might have expected, only the first subscriber receives
the value. This happens because you previously canceled the second subscriber’s
subscription:

——— Example of: PassthroughSubject ———
Received value Hello
Received value (sink) Hello
Received value World
Received value (sink) World
Received value Still there?

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 31

Add this code to the example:

subject.send(completion: .finished)
subject.send("How about another one?")

Run the playground. The second subscription does not receive the "How about
another one?" value. This happens because the subject previously sent a
completion event that the second subscriber did receive but the first subscriber did
not because it was no longer subscribed:

——— Example of: PassthroughSubject ———
Received value Hello
Received value (sink) Hello
Received value World
Received value (sink) World
Received value Still there?
Received completion finished

Add the following code immediately before the line that sends the completion event.

subject.send(completion: .failure(MyError.test))

Run the playground, again. You’ll see the following printed to the console:

——— Example of: PassthroughSubject ———
Received value Hello
Received value (sink) Hello
Received value World
Received value (sink) World
Received value Still there?
Received completion failure(...MyError.test)

Note: The error type is abbreviated.

The error is received by the first subscriber, but the completion event that was sent
after the error is not. This demonstrates that once a publisher sends a single
completion event — whether it’s a normal completion or an error — it’s done, as in
fini, kaput!

Passing through values with a PassthroughSubject is one way to bridge imperative
code to the declarative world of Combine. Sometimes, however, you may also want to
look at the current value of a publisher in your imperative code — for that, you have
an aptly named subject: CurrentValueSubject.

In the next example you’ll also learn a more convenient way to manage

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 32

subscriptions. Instead of storing each subscription as a value, you can store multiple
subscriptions in a collection of AnyCancellable. The collection will then
automatically cancel each subscription added to it when the collection is about to be
deinitialized.

Add this new example to your playground:

example(of: "CurrentValueSubject") {
 // 1
 var subscriptions = Set<AnyCancellable>()

 // 2
 let subject = CurrentValueSubject<Int, Never>(0)

 // 3
 subject
 .sink(receiveValue: { print($0) })
 .store(in: &subscriptions) // 4
}

Here’s what’s happening:

1. Initialize an empty subscriptions set of type AnyCancellable.

2. Create a CurrentValueSubject of type Int and Never. This will publish integers
and never publish an error, with an initial value of 0.

3. Create a subscription to the subject and print values received from it.

4. Store the subscription in the subscriptions set, which is passed as an inout
parameter so that the same set is updated instead of a copy.

You must initialize current value subjects with an initial value; new subscribers
immediately get that value or the latest value published by that subject. Run the
playground to see this in action:

——— Example of: CurrentValueSubject ———
0

Now, add this code to send two new values:

subject.send(1)
subject.send(2)

Run the playground again. Those values are also received and printed to the console:

1
2

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 33

Unlike a passthrough subject, you can ask a current value subject for its value at any
time. Add the following code to print out the subject’s current value:

print(subject.value)

As you might have inferred by the subject’s type name, you can get its current value
by accessing its value property. Run the playground, and you’ll see 2 printed a
second time.

Calling send(_:) on a current value subject is one way to send a new value. Another
way is to assign a new value to its value property. Whoah, did we just go all
imperative here or what? Add this code:

subject.value = 3
print(subject.value)

Run the playground. You’ll see 2 and 3 each printed twice — once by the receiving
subscriber and once from printing the subject’s value after adding that value to the
subject.

Next, at the end of this example, create a new subscription to the current value
subject:

subject
 .sink(receiveValue: { print("Second subscription:", $0) })
 .store(in: &subscriptions)

Here, you create a subscription and print the received values. You also store that
subscription in the subscriptions set.

You read a moment ago that the subscriptions set will automatically cancel the
subscriptions added to it, but how can you verify this? You can use the print()
operator, which will log all publishing events to the console.

Insert the print() operator in both subscriptions, between subject and sink. The
beginning of each subscription should look like this:

subject
 .print()
 .sink...

Run the playground again and you’ll see the following output for the entire example:

——— Example of: CurrentValueSubject ———
receive subscription: (CurrentValueSubject)
request unlimited

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 34

receive value: (0)
0
receive value: (1)
1
receive value: (2)
2
2
receive value: (3)
3
3
receive subscription: (CurrentValueSubject)
request unlimited
receive value: (3)
Second subscription: 3
receive cancel
receive cancel

Each event is printed, along with the values printed in the subscription handlers, and
when you printed the subject’s values.

So, you may be wondering, can you also assign a completion event to the value
property? Try it out by adding this code:

subject.value = .finished

Nope! That produces an error. A CurrentValueSubject’s value property is meant
for just that: values. Completion events must still be sent using send(_:). Change
the erroneous line of code to the following:

subject.send(completion: .finished)

Run the playground again. This time you’ll see the following output at the bottom:

receive finished
receive finished

Both subscriptions receive the completion event instead of the cancel event. They are
finished and no longer need to be canceled.

Dynamically adjusting demand
You learned earlier that adjusting demand in Subscriber.receive(_:) is additive.
You’re now ready to take a closer look at how that works in a more elaborate
example. Add this new example to the playground:

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 35

example(of: "Dynamically adjusting Demand") {
 final class IntSubscriber: Subscriber {
 typealias Input = Int
 typealias Failure = Never

 func receive(subscription: Subscription) {
 subscription.request(.max(2))
 }

 func receive(_ input: Int) -> Subscribers.Demand {
 print("Received value", input)

 switch input {
 case 1:
 return .max(2) // 1
 case 3:
 return .max(1) // 2
 default:
 return .none // 3
 }
 }

 func receive(completion: Subscribers.Completion<Never>) {
 print("Received completion", completion)
 }
 }

 let subscriber = IntSubscriber()

 let subject = PassthroughSubject<Int, Never>()

 subject.subscribe(subscriber)

 subject.send(1)
 subject.send(2)
 subject.send(3)
 subject.send(4)
 subject.send(5)
 subject.send(6)
}

Most of this code is similar to example you’ve previously worked on in this chapter,
so instead you’ll focus on the receive(_:) method. You continually adjust the
demand from within your custom subscriber:

1. The new max is 4 (original max of 2 + new max of 2).

2. The new max is 5 (previous 4 + new 1).

3. max remains 5 (previous 4 + new 0).

Run the playground and you’ll see the following:

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 36

——— Example of: Dynamically adjusting Demand ———
Received value 1
Received value 2
Received value 3
Received value 4
Received value 5

As expected, five values are emitted but the sixth is not printed out.

There is one more important thing you’ll want to know about before moving on:
hiding details about a publisher from subscribers.

Type erasure
There will be times when you want to let subscribers subscribe to receive events from
a publisher without being able to access additional details about that publisher.

This would be best demonstrated with an example, so add this new one to your
playground:

example(of: "Type erasure") {
 // 1
 let subject = PassthroughSubject<Int, Never>()

 // 2
 let publisher = subject.eraseToAnyPublisher()

 // 3
 publisher
 .sink(receiveValue: { print($0) })
 .store(in: &subscriptions)

 // 4
 subject.send(0)
}

With this code you:

1. Create a passthrough subject.

2. Create a type-erased publisher from that subject.

3. Subscribe to the type-erased publisher.

4. Send a new value through the passthrough subject.

Option-click on publisher and you’ll see that it is of type AnyPublisher<Int,

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 37

Never>.

AnyPublisher is a type-erased struct that conforms the Publisher protocol. Type
erasure allows you to hide details about the publisher that you may not want to
expose to subscribers — or downstream publishers, which you’ll learn about in the
next section.

Are you are experiencing a little déjà vu right now? If so, that’s because you saw
another case of type erasure earlier. AnyCancellable is a type-erased class that
conforms to Cancellable, which lets callers cancel the subscription without being
able to access the underlying subscription to do things like request more items.

One example of when you would want to use type erasure for a publisher is when you
want to use a pair of public and private properties, to allow the owner of those
properties to send values on the private publisher, and let outside callers only access
the public publisher for subscribing but not be able to send values. AnyPublisher
does not have a send(_:) operator, so new values cannot be added to that publisher.

The eraseToAnyPublisher() operator wraps the provided publisher in an instance
of AnyPublisher, hiding the fact that the publisher is actually a
PassthroughSubject. This is also necessary because you cannot specialize the
Publisher protocol, e.g., you cannot define the type as Publisher<UIImage,
Never>.

To prove that publisher is type-erased and cannot be used to send new values, add
this code to the example.

publisher.send(1)

You get the error Value of type 'AnyPublisher<Int, Never>' has no member
'send'. Comment out that line of code before moving on.

Fantastic job! You’ve learned a lot in this chapter, and you’ll put these new skills to
work throughout the rest of this book and beyond. But not so fast! It’s time to
practice what you just learned. So, grab yourself a <insert your favorite
beverage> to enjoy while you work through the challenges for this chapter.

Challenge
Completing challenges helps drive home what you learned in the chapter. There are
starter and final versions of the challenge in the exercise files download.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 38

Challenge: Create a Blackjack card dealer
Open Starter.playground in the challenge folder, and twist down the playground
page and Sources in the Project navigator. Select SupportCode.swift.

Review the helper code for this challenge, including

• A cards array that contains 52 tuples representing a standard deck of cards.

• Two type aliases: Card is a tuple of String and Int, and Hand is an array of Cards.

• Two helper properties on Hand: cardString and points.

• A HandError error enumeration.

In the main playground page, add code immediately below the comment // Add
code to update dealtHand here that evaluates the result returned from the
hand’s points property. If the result is greater than 21, send the HandError.busted
on the dealtHand subject. Otherwise, send the hand value.

Also in the main playground page, add code immediately after the comment // Add
subscription to dealtHand here to subscribe to dealtHand and handle receiving
both values and an error. For received values, print a string containing the results of
the hand’s cardString and points properties.

For an error, print it out. A tip though: You can receive either a .finished or
a .failure in the receivedCompletion block, so you’ll want to distinguish whether
that completion is a failure or not, and only print failures. HandError conforms to
CustomStringConvertible so printing it will result in a user-friendly error message.
You can use it like this:

if case let .failure(error) = $0 {
 print(error)
}

The call to deal(_:) currently passes 3, so three cards are dealt each time you run
the playground. See how many times you go bust versus how many times you stay in
the game. Are the odds stacked up against you in Vegas or what?

The card emoji characters are small when printed in the console. You can
temporarily increase the font size of the Executable Console Output for this
challenge. To do so, select Xcode ▸ Preferences... ▸ Fonts & Colors/Console. Then,
select Executable Console Output, and click the T button in the bottom right to
change it to a larger font, such as 48.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 39

Solution

How’d you do?

There were two things you needed to add to complete this challenge. The first was to
update the dealtHand publisher in the deal function, checking the hand’s points
and sending an error if it’s over 21:

// Add code to update dealtHand here
if hand.points > 21 {
 dealtHand.send(completion: .failure(.busted))
} else {
 dealtHand.send(hand)
}

Next, you needed to subscribe to dealtHand and print out the value received or the
completion event if it was an error:

_ = dealtHand
 .sink(receiveCompletion: {
 if case let .failure(error) = $0 {
 print(error)
 }
 }, receiveValue: { hand in
 print(hand.cardString, "for", hand.points, "points")
 })

Each time you run the playground, you’ll get a new hand and output similar to the
following:

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 40

——— Example of: Create a Blackjack card dealer ———
!"# for 21 points

Blackjack!

Key points
• Publishers transmit a sequence of values over time to one or more subscribers,

either synchronously or asynchronously.

• A subscriber can subscribe to a publisher to receive values; however, the
subscriber’s input and failure types must match the publisher’s output and failure
types.

• There are two built-in operators you can use to subscribe to publishers:
sink(_:_:) and assign(to:on:).

• A subscriber may increase the demand for values each time it receives a value, but
it cannot decrease demand.

• To free up resources and prevent unwanted side effects, cancel each subscription
when you’re done.

• You can also store a subscription in an instance or collection of AnyCancellable
to receive automatic cancelation upon deinitialization.

• A future can be used to receive a single value asynchronously at a later time.

• Subjects are publishers that enable outside callers to send multiple values
asynchronously to subscribers, with or without a starting value.

• Type erasure enables prevents callers from being able to access additional details
of the underlying type.

• Use the print() operator to log all publishing events to the console and see
what’s going on.

Where to go from here?
Congratulations! You’ve taken a huge step forward by completing this chapter. You
learned how to work with publishers to send values and completion events, and how
to use subscribers to receive those values and events. Up next, you’ll learn how to

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 41

manipulate the values coming from a publisher to help filter, transform or combine
them.

Combine Chapter 2: Publishers & Subscribers

raywenderlich.com 42

CConclusion

You're finally here! Congratulations on completing this book, and we hope you
enjoyed learning about Combine from the book as much as we've enjoyed making it.

In this book, you've learned about how Combine enables you to write apps in a
declarative and expressive way while also making your app reactive to changes as
they occur. This makes your app code much more versatile and easier to reason
about, along with powerful compositional abilities between different pieces of logic
and data.

You started off as a complete Combine beginner, and look at you now; oh, the things
you've been through—operators, networking, debugging, error handling, schedulers,
custom publishers, testing, and you've even worked with SwiftUI.

This is where we part ways, but we have full confidence in you! We hope you'll
continue experimenting with Combine and constantly enhancing your "Combine
muscles." As the saying goes—"practice makes perfect."

And like anything new you learn—don't forget to enjoy the ride.

If you have any questions or comments about the projects in this book, please stop
by our forums at http://forums.raywenderlich.com.

Thank you again for purchasing this book. Your continued support is what makes the
books, tutorials, videos and other things we do at raywenderlich.com possible. We
truly appreciate it!

— Florent, Marin, Sandra, Scott, Shai, Tyler and Vicki

The Combine: Asynchronous Programming with Swift team

raywenderlich.com 43

	Book License
	About This Book Sample
	Book Source Code & Forums
	What You Need
	Chapter 2: Publishers & Subscribers
	Getting started
	Hello Publisher
	Hello Subscriber
	Hello Cancellable
	Understanding what’s going on
	Creating a custom subscriber
	Hello Future
	Hello Subject
	Dynamically adjusting demand
	Type erasure
	Challenge
	Key points
	Where to go from here?

	Conclusion

