

SwiftUI by Tutorials
By Antonio Bello, Phil Łaszkowicz, Bill Morefield & Audrey Tam

Copyright ©2019 Razeware LLC.

Notice of Rights
All rights reserved. No part of this book or corresponding materials (such as text,
images, or source code) may be reproduced or distributed by any means without prior
written permission of the copyright owner.

Notice of Liability
This book and all corresponding materials (such as source code) are provided on an
“as is” basis, without warranty of any kind, express of implied, including but not
limited to the warranties of merchantability, fitness for a particular purpose, and
noninfringement. In no event shall the authors or copyright holders be liable for any
claim, damages or other liability, whether in action of contract, tort or otherwise,
arising from, out of or in connection with the software or the use of other dealing in
the software.

Trademarks
All trademarks and registered trademarks appearing in this book are the property of
their own respective owners.

SwiftUI by Tutorials

raywenderlich.com 2

About the Authors
Antonio Bello is an author of this book. Antonio has spent most of
his life writing code, and he’s gained a lot of experience in several
languages and technologies. A few years ago he fell in love with iOS
development, and that’s what he mostly works on since then,
although he’s always open for challenges and for playing with new
toys. He believes that reputation is the most important skill in his
job, and that “it cannot be done” actually means “it can be done,
but it’s not economically convenient." When he’s not working, he’s
probably playing drums or making songs in his small, but well
fitted, home recording studio.

Phil Łaszkowicz is an author of this book. Phil's been delivering
large-scale software solutions for many years, as well as working
with startups as a board member, mentor, and coach. He's worked
with neural networks for over a decade, and enjoys combining deep
learning with intuitive and elegant user experiences across mobile
and web. In his spare time he writes music, drinks coffee at a
professional level, and can be found scaling cliff walls, composing
music, sea kayaking, or taking part in competitive archery.

Bill Morefield is an author of this book. Bill has spent most of his
professional life writing code. At some point he has worked in
almost every language other than COBOL. He bought his first
Apple computer to learn to program for the iPhone and got hooked
on the platform. He manages the web and mobile development
team for a college in Tennessee, where he still gets to write code.
When not attached to a keyboard he enjoys hiking and
photography.

Audrey Tam is an author of this book. As a retired computer
science academic, she’s a technology generalist with expertise in
translating new knowledge into learning materials. Audrey now
teaches short courses in iOS app development to non-
programmers, and attends nearly all Melbourne Cocoaheads
monthly meetings. She also enjoys long train journeys, knitting,
and trekking in the Aussie wilderness.

SwiftUI by Tutorials

raywenderlich.com 3

About the Editors
Pablo Mateo is the final pass editor for this book. He is Technical
Lead at Banco Santander, and was also founder and CTO of a
Technology Development company in Madrid. His expertise is
focused on web and mobile app development, although he first
started as a Creative Art Director. He has been for many years the
Main Professor of the iOS and Android Mobile Development
Masters Degree at a well-known technology school in Madrid
(CICE). He is currently specializing in Artificial Intelligence &
Machine-Learning.

Morten Faarkrog is a tech editor for this book. Morten is
Technical Director at a full-service digital agency in Copenhagen,
Denmark. He has a background as an iOS developer and loves
tinkering with new innovative technologies—one of which you'll
shortly be diving into. He an advocate of trying new things and
taking calculated risks, and thinks you should be, too!

Kelvin Lau is a tech editor for this book. Kelvin is a senior mobile
engineer at Instacart. He loves space related stuff, and wishes to
head up there someday. Outside of programming work, he’s an
aspiring entrepreneur and musician. You can find him on Twitter:
@kelvinlauKL

About the Artist
Vicki Wenderlich is the designer and artist of the cover of this
book. She is Ray’s wife and business partner. She is a digital artist
who creates illustrations, game art and a lot of other art or design
work for the tutorials and books on raywenderlich.com. When she’s
not making art, she loves hiking, a good glass of wine and
attempting to create the perfect cheese plate.

SwiftUI by Tutorials

raywenderlich.com 4

Dedications
"To Magdalena, Andrea and Alex, for their support and

patience, watching me tapping on the keyboard all day long."

— Antonio Bello

"To Isabella for being the best inspiration when distractions
are too easy to find, and the best distraction for when work is

too easy to lose myself in."

— Phil Laszkowicz

"To my parents for buying me that first computer when it was
a lot weirder idea than it is now. To them and rest of my family

for putting up with all those questions as a child."

— Bill Morefield

"To my parents and teachers, who set me on the path thatled
me to the here and now."

— Audrey Tam

SwiftUI by Tutorials

raywenderlich.com 5

Table of Contents: Overview
Book License 8..

About This Book Sample 9...

Book Source Code & Forums 11...

What You Need 13..

Chapter 2: Getting Started 14...

Where to Go From Here? 36..

Conclusion 39...

SwiftUI by Tutorials

raywenderlich.com 6

Table of Contents: Extended
Book License 8.

About This Book Sample 9.

Book Source Code & Forums 11.

What You Need 13.

Chapter 2: Getting Started 14.
Getting started 15.

Creating your UI 20.

Updating the UI 26.

Making Reusable Views 28.

Presenting an Alert 32.

Challenge 34.

Key points 35.

Where to Go From Here? 36.

Conclusion 39.

SwiftUI by Tutorials

raywenderlich.com 7

LBook License

By purchasing SwiftUI by Tutorials, you have the following license:

• You are allowed to use and/or modify the source code in SwiftUI by Tutorials in as
many apps as you want, with no attribution required.

• You are allowed to use and/or modify all art, images and designs that are included
in SwiftUI by Tutorials in as many apps as you want, but must include this
attribution line somewhere inside your app: “Artwork/images/designs: from
SwiftUI by Tutorials, available at www.raywenderlich.com”.

• The source code included in SwiftUI by Tutorials is for your personal use only. You
are NOT allowed to distribute or sell the source code in SwiftUI by Tutorials
without prior authorization.

• This book is for your personal use only. You are NOT allowed to sell this book
without prior authorization, or distribute it to friends, coworkers or students; they
would need to purchase their own copies.

All materials provided with this book are provided on an “as is” basis, without
warranty of any kind, express or implied, including but not limited to the warranties
of merchantability, fitness for a particular purpose and noninfringement. In no event
shall the authors or copyright holders be liable for any claim, damages or other
liability, whether in an action or contract, tort or otherwise, arising from, out of or in
connection with the software or the use or other dealings in the software.

All trademarks and registered trademarks appearing in this guide are the properties
of their respective owners.

raywenderlich.com 8

AAbout This Book Sample

SwiftUI is a new paradigm in Apple-related development. In 2014, after years of
programming apps with Objective-C, Apple surprised the world with a new open-
source language: Swift..

SwiftUI’s introduction in 2019 creates another opportunity for a paradigm shift in
the industry. After years using UIKit and AppKit to create user interfaces, SwiftUI
presents a fresh, new way to create UI for your apps.

This book is for intermediate iOS developers who already know the basics of iOS and
Swift development but want to learn how to build user interfaces with SwiftUI and
how to integrate SwiftUI into their existing apps.

We are pleased to offer you this sample from the full SwiftUI by Tutorials book that
will introduce you to these concepts and give you a chance to practice them in our
hands-on By Tutorials style.

This sample includes:

1. Introduction: A brief history about Swift and SwiftUI, and an explanation of how
to get the most out of this book.

2. Getting Started: Learn how to use the Xcode canvas to create your UI side-by-
side with its code. You’ll create a reusable view for the sliders in your app, see
how @State variables work and how to use them to update your UI whenever a
state value changes. And finally, you’ll learn how to present an alert to the user.

You can get the the complete SwiftUI by Tutorials book here:

• https://store.raywenderlich.com/products/swiftui-by-tutorials.

raywenderlich.com 9

Enjoy!

The SwiftUI by Tutorials Team

SwiftUI by Tutorials About This Book Sample

raywenderlich.com 10

BBook Source Code &
Forums

If you bought the digital edition
The digital edition of this book comes with the source code for the starter and
completed projects for each chapter. These resources are included with the digital
edition you downloaded from store.raywenderlich.com.

The digital edition of this book also comes with free access to any future updates we
may make to the book!

The best way to get update notifications is to sign up for our monthly newsletter.
This includes a list of the tutorials that came out on raywenderlich.com that month,
any important news like book updates or new books, and a list of our favorite iOS
development links for that month. You can sign up here:

• www.raywenderlich.com/newsletter

If you bought the print version
You can get the source code for the print edition of the book here:

https://store.raywenderlich.com/products/swift-ui-by-tutorials-source-code

Forums
We’ve also set up an official forum for the book at forums.raywenderlich.com. This is
a great place to ask questions about the book or to submit any errors you may find.

raywenderlich.com 11

Digital book editions
We have a digital edition of this book available in both ePUB and PDF, which can be
handy if you want a soft copy to take with you, or you want to quickly search for a
specific term within the book.

Buying the digital edition version of the book also has a few extra benefits: free
updates each time we update the book, access to older versions of the book, and you
can download the digital editions from anywhere, at anytime.

Visit our SwiftUI by Tutorials store page here:

• https://store.raywenderlich.com/products/swift-ui-by-tutorials.

And if you purchased the print version of this book, you’re eligible to upgrade to the
digital editions at a significant discount! Simply email support@razeware.com with
your receipt for the physical copy and we’ll get you set up with the discounted digital
edition version of the book.

SwiftUI by Tutorials Book Source Code & Forums

raywenderlich.com 12

WWhat You Need

To follow along with this book, you'll need the following:

• A Mac running macOS Mojave (10.14.4) or later. Optionally, you can use macOS
Catalina (10.15), which is still in Beta. You’ll need an Apple Developers account in
order to install it.

• Xcode 11 or later. Xcode is the main development tool for iOS. You’ll need Xcode
11 or later to make use of SwiftUI. You can download the latest version of Xcode
from Apple's developer site here: apple.co/2asi58y.

Note: You can use the same link to install the beta version of macOS Catalina.
Bear in mind that because it is still in beta, you might find some bugs and
unexpected errors while following along the tutorials if you are using the beta
version or macOS Mojave. SwiftUI is a new technology that still needs some
polish, so don’t expect perfect behavior in every situation. Use the book’s
forum to ask any questions you might have.

If you haven’t installed the latest version of Xcode, be sure to do that before
continuing with the book. The code covered in this book depends on Swift 5.1,
macOS Catalina and Xcode 11 — you may get lost if you try to work with an older
version.

raywenderlich.com 13

2Chapter 2: Getting Started

By Audrey Tam

SwiftUI is some of the most exciting news since Apple first announced Swift in 2014.
It's an enormous step towards Apple's goal of getting everyone coding; it simplifies
the basics so that you can spend more time on custom features that delight your
users.

If you're reading this book, you're just as excited as I am about developing apps with
this new framework. This chapter will get you comfortable with the basics of creating
a SwiftUI app and (live-) previewing it in Xcode. You'll create a small color-matching
game, inspired by our famous BullsEye app from our book iOS Apprentice. The goal of
the app is to try and match a randomly generated color by selecting colors from the
RGB color space:

Playing the game

raywenderlich.com 14

In this chapter, you will:

• Learn how to use the Xcode canvas to create your UI side-by-side with its code, and
see how they stay in sync—a change to one side always updates the other side.

• Create a reusable view for the sliders seen in the image.

• Learn about @State variables and use them to update your UI whenever a state
value changes.

• Present an alert to show the user's score.

Time to get started!

Getting started
Open the RGBullsEye starter project from the chapter materials, and build and run:

UIKit RGBullsEye starter app

This app displays a target color with randomly generated red, green and blue values.
The user moves the sliders to make the left color block match the right side. You're
about to create a SwiftUI app that does the exact same thing, but more swiftly!

Creating a new SwiftUI project
To start, create a new Xcode project (Shift-Command-N), select iOS ▸ Single View
App, name the project RGBullsEye, then check the Use SwiftUI checkbox:

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 15

Use SwiftUI checkbox

Save your project somewhere outside the RGBullsEye-Starter folder.

In the project navigator, open the RGBullsEye group to see what you got: the
AppDelegate.swift, which you may be used to seeing, is now split into
AppDelegate.swift and SceneDelegate.swift. The latter has the window:

SceneDelegate.swift

SceneDelegate itself isn't specific to SwiftUI, but this line is:

window.rootViewController = UIHostingController(rootView:
ContentView())

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 16

UIHostingController creates a view controller for the SwiftUI view ContentView.

Note: UIHostingController enables you to integrate SwiftUI views into an
existing app. You'll learn how in Chapter 4, "Integrating SwiftUI."

When the app starts, window displays an instance of ContentView, which is defined
in ContentView.swift. It's a struct that conforms to the View protocol:

struct ContentView: View {
 var body: some View {
 Text("Hello World")
 }
}

This is SwiftUI declaring that the body of ContentView contains a Text view that
displays Hello World.

Previewing your ContentView
Down in the DEBUG block, ContentView_Previews contains a view that contains an
instance of ContentView:

struct ContentView_Previews : PreviewProvider {
 static var previews: some View {
 ContentView()
 }
}

This is where you can specify sample data for the preview, and you can compare
different font sizes and color schemes. But where is the preview?

There's a big blank space next to the code, with this at the top:

Preview Resume button

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 17

Click Resume, and wait a while, to see the preview:

Hello World preview

Note: If you don't see the Resume button, click the Editor Options button,
and select Canvas:

Editor options

If you still don't see the Resume button, make sure you're running macOS Catalina
(10.15).

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 18

Note: Instead of clicking the Resume button, you can use the very useful
keyboard shortcut Option-Command-P. It works even when the Resume
button isn't displayed immediately after you change something in the view.

Previewing in landscape
RGBullsEye looks best in landscape orientation. However, at the time of writing,
Xcode 11 doesn't provide an easy way to preview in landscape orientation. For now,
you have to specify fixed width and height values—inside the static previews
property, add a previewLayout modifier to ContentView():

ContentView().previewLayout(.fixed(width: 568, height: 320))

These values display an iPhone SE-sized window in landscape orientation.

To see a list of dimensions for other iPhone models, go to, see this article, "The
Ultimate Guide To iPhone Resolutions," which you can access here: bit.ly/29Ce3Ip.

Note: To save some display space here, I set the editor layout to Canvas on
Bottom.

Preview iPhone SE in landscape

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 19

Creating your UI
Your SwiftUI app doesn't have a storyboard or a view controller—ContentView.swift
takes over their jobs. You can use any combination of code and drag-from-object-
library to create your UI, and you can perform storyboard-like actions directly in your
code! Best of all, everything stays in sync all the time!

SwiftUI is declarative: you declare how you want the UI to look, and SwiftUI
converts your declarations into efficient code that gets the job done. Apple
encourages you to create as many views as you need to keep your code easy to read.
Reusable parameterized views are especially recommended—it's just like extracting
code into a function, and you'll create one later in this chapter.

For this chapter, you'll mostly use the canvas, similar to how you'd layout your UI in
Interface Builder (IB).

Some SwiftUI vocabulary
Before you dive into creating your views, there's a little vocabulary you must learn.

• Canvas and Minimap: To get the full SwiftUI experience, you need Xcode 11 and
macOS 10.15—then you'll be able to preview your app's views in the canvas,
alongside the code editor. Also available is a minimap of your code: It doesn’t
appear in my screenshots because I hid it: Editor ▸ Hide Minimap.

• Container views: If you've previously used stack views, you'll find it pretty easy to
create this app's UI in SwiftUI, using HStack and VStack container views. There
are other container views, including ZStack and Group—you'll learn about them in
Chapter 9, "Containers".

In addition to container views, there are SwiftUI views for many of the UIKit objects
you know and love, like Text, Button and Slider. The + button in the toolbar
displays the Library of SwiftUI views.

Modifiers: Instead of setting attributes or properties of UIKit objects, you can attach
modifiers—for foreground color, font, padding and a lot more.

Creating the target color block
In RGBullsEye, the target color block, which is the color your user is trying to match,
is a Color view above a Text view. But in SwiftUI you can't have more than one view
at the top-level of body, so you'll need to put them into a container view—a VStack
(vertical stack) in this scenario.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 20

The workflow is as follows:

1. Embed the Text view in a VStack and edit the text.

2. Add a Color view to the stack.

Step 1: Command-click the Hello World Text view in the canvas—notice Xcode
highlights the code line—and select Embed in VStack:

Embed Text view in VStack

Note: If Command-click jumps to the definition of Text, use Control-
Command-click instead.

The canvas looks the same, but there's now a VStack in your code.

Change "Hello World" to "Match this color": You could do this directly in the
code, but, just so you know you can do this, Command-click the Text view in the
canvas, and select Inspect...:

Inspect Text view

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 21

Then edit the text in the inspector:

Edit text in inspector

Your code updates to match! Just for fun, change the text in your code, and watch it
change in the canvas. Then change it back. Efficient, right?

Step 2: Click the + button in the toolbar to open the Library. Search for Color. Then
drag this object onto the Text view in the canvas; while dragging, move the cursor
down until you see the hint Insert Color Into Vertical Stack—not Add Color to a
new Vertical Stack along with existing Vertical Stack—but keep the cursor near
the top of the Text view. Then release the Color object.

Insert Color into VStack

And there's your Color view inside the VStack, in both the canvas and your code!

Color view in VStack

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 22

Note: In IB, you could drag several objects onto the view, then select them all,
and embed them in a stack view. But the SwiftUI Embed command only works
on a single object.

Creating the guess color block
The guess color block looks a lot like the target color block, but with different text. It
needs to be on the right-side of the target color block; that means using an HStack
(horizontal stack) as the top-most view.

In SwiftUI, it's easier to select nested objects in the code than in the canvas.

In your code, Command-click the VStack, and select Embed in HStack.

Embed color block VStack in HStack

Then copy the VStack closure, paste it inside the HStack, and change the Text in the
second VStack to "R: 127 G: 127 B: 127". Your HStack now looks like this:

HStack {
 VStack {
 Color(red: 0.5, green: 0.5, blue: 0.5)
 Text("Match this color")
 }
 VStack {
 Color(red: 0.5, green: 0.5, blue: 0.5)
 Text("R: 127 G: 127 B: 127")
 }
}

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 23

Creating the button and slider
In the original app, the Hit me! button and color sliders went below the color blocks;
again a container view is needed. To achieve the desired result, you need to put your
HStack with color blocks inside a VStack.

Note: To keep the Library open, Option-click the + button.

First, in your code, embed the HStack in a VStack, then drag a Button from the
Library into your code: Hover slightly below the HStack view's closing brace until a
new line opens for you to drop the object.

Press Option-Command-P or click Resume to see your button:

Add Button to code

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 24

Now that the button makes it clear where the VStack bottom edge is, you can drag a
Slider from the Library onto your canvas, just below the Button:

Insert Slider into VStack

Change the Button Text to "Hit Me!", and set the Slider value to .constant(0.5).

Here's what it looks like:

Button & Slider in VStack

Note: If your slider thumb isn't centered, press Option-Command-P until it
is.

Well, yes, you do need three sliders, but the slider values will update the UI, so you'll
first set up the red slider, then replicate it for the other two sliders.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 25

Updating the UI
You can use "normal" constants and variables in SwiftUI, but if the UI should update
when its value changes, you designate a variable as a @State variable. In SwiftUI,
when a @State variable changes, the view invalidates its appearance and recomputes
the body. To see this in action, you'll ensure the variables that affect the guess color
are @State variables.

Using @State variables
Add these properties at the top of struct ContentView, above the body property:

let rTarget = Double.random(in: 0..<1)
let gTarget = Double.random(in: 0..<1)
let bTarget = Double.random(in: 0..<1)
@State var rGuess: Double
@State var gGuess: Double
@State var bGuess: Double

In the RGB color space, R, G and B values are between 0 and 1. The target color
doesn't change during the game, so its values are constants, initialized to random
values. You could also initialize the guess values to 0.5, but I've left them
uninitialized to show you what you must do, if you don't initialize some variables.

Scroll down to the ContentView_Previews struct, which instantiates a ContentView
to display in the preview. The initializer now needs parameter values for the guess
values. Change ContentView() to this:

ContentView(rGuess: 0.5, gGuess: 0.5, bGuess: 0.5)

This makes sure the sliders' thumbs are centered when previewing the view.

You must also modify the initializer in SceneDelegate, in
scene(_:willConnectTo:options:) — replace ContentView() in this line:

window.rootViewController = UIHostingController(rootView:
 ContentView(rGuess: 0.5, gGuess: 0.5, bGuess: 0.5))

When the app loads its root scene, the slider thumbs will be centered.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 26

Updating the Color views
In the VStack containing Text("Match this color"), edit the Color view to use
the target values:

Color(red: rTarget, green: gTarget, blue: bTarget)

Press Option-Command-P to see a random target color.

Random target color

Note: The preview refreshes itself periodically, as well as when you click
Resume or the live preview button (more about this soon), so don't be
surprised to see the target color change, all by itself, every so often.

Similarly, modify the guess Color to use the guess values:

Color(red: rGuess, green: gGuess, blue: bGuess)

When the R, G and B values are all 0.5, you get gray. To check these guess values are
working, change them in the preview—for example:

static var previews: some View {
 ContentView(rGuess: 0.7, gGuess: 0.3, bGuess: 0.6)
 .previewLayout(.fixed(width: 568, height: 320))
}

And see the preview update to something like this:

Non-gray color to check guess values

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 27

The R, G and B values in the Text view are still 127, but you'll fix that soon.

Change the preview values back to 0.5.

Making Reusable Views
Because the sliders are basically identical, you'll define one slider view, then reuse it
for the other two sliders—exactly as Apple recommends.

Making the red slider
First, pretend you're not thinking about reuse, and just create the red slider. You
should tell your users its minimum and maximum values with a Text view on either
side of the Slider. To achieve this layout, you'll need an HStack.

Embed the Slider in an HStack, then insert Text views above and below (in code) or
to the left and right (in canvas). Change the Placeholder text to 0 and 255, then
update the preview to see how it looks:

Slider from 0 to 255

Note: You and I know the slider goes from 0 to 1, but the 255 end label and 0-
to-255 RGB values are for your users, who might feel more comfortable
thinking of RGB values between 0 and 255, as in the hexadecimal
representation of colors.

The numbers look cramped, so you'll fix that, and also make this look and behave like
a red slider.

Edit the slider HStack code to look like this:

HStack {
 Text("0").foregroundColor(.red)
 Slider(value: $rGuess)
 Text("255").foregroundColor(.red)
}.padding(.horizontal)

You've modified the Text views to be red, set the Slider value to $rGuess—the
position of its thumb—and modified the HStack with some horizontal padding. But
what's with the $? You'll find out real soon, but first, check that it's working.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 28

Down in the preview code, change rGuess to something different from 0.5, then
press Option-Command-P:

Slider value 0.8

Awesome—I set rGuess to 0.8, and the slider thumb is right where I expect it to be!
And the numbers are red, and not squashed up against the edges.

Bindings
So back to that $—it's actually pretty cool and ultra powerful for such a little
symbol. rGuess by itself is just the value—read-only. $rGuess is a read-write
binding; you need it here, to update the guess color while the user is changing the
slider's value.

To see the difference, set the values in the Text view below the guess Color view:
Change Text("R: 127 G: 127 B: 127") to the following:

Text("R: \(Int(rGuess * 255.0))"
 + " G: \(Int(gGuess * 255.0))"
 + " B: \(Int(bGuess * 255.0))")

Here, you're only using (read-only) the guess values, not changing them, so you don't
need the $ prefix.

Press Option-Command-P:

R value 204 = 255 * 0.8

And now the R value is 204—that's 255 * 0.8, as it should be!

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 29

Extracting subviews
Now, the purpose of this section is to create a reusable view from the red slider
HStack. To be reusable, the view will need some parameters. If you were to Copy-
Paste-Edit this HStack to create the green slider, you'd change .red to .green, and
$rGuess to $gGuess. So those are your parameters.

Command-click the red slider HStack, and select Extract Subview:

Extract HStack to subview

This works the same as Refactor ▸ Extract to Function, but for SwiftUI views.

Don't worry about all the error messages that appear; they'll go away when you've
finished editing your new subview.

Name the extracted view ColorSlider, then add these properties at the top, before
the body property:

@Binding var value: Double
var textColor: Color

For the value variable, you use @Binding instead of @State, because the
ColorSlider view doesn't own this data—it receives an initial value from its parent
view and mutates it.

Now, replace $rGuess with $value, and .red with textColor:

Text("0").foregroundColor(textColor)
Slider(value: $value)
Text("255").foregroundColor(textColor)

Then go back up to the call to ColorSlider() in the VStack, and add your
parameters:

ColorSlider(value: $rGuess, textColor: .red)

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 30

Check that the preview still shows the red slider correctly, then Copy-Paste-Edit this
line to replace the Text placeholders with the other two sliders:

ColorSlider(value: $gGuess, textColor: .green)
ColorSlider(value: $bGuess, textColor: .blue)

Change the guess values in the preview code, then update the preview:

Guess values work for sliders and guess text

Everything's working! You can't wait to play the game? Coming right up!

But first, set the guess values back to 0.5 in the preview code.

Live Preview
You don't have to fire up Simulator to play the game: Down by the lower-right corner
of the preview device, click the live preview button:

Live preview button

Wait for the Preview spinner to stop; if necessary, click Try Again.

Now move those sliders to match the color!

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 31

Playing the game

Note: At the time of writing, Xcode's live preview doesn't use the fixed width
and height settings. Instead, it uses the Simulator device that's selected in the
project's scheme — in this case, iPhone 8.

Stop and think about what's happening here, compared with how the UIKit app
works. The SwiftUI views update themselves whenever the slider values change! The
UIKit app puts all that code into the slider action. Every @State variable is a source
of truth, and views depend on state, not on a sequence of events.

How amazing is that! Go ahead and do a victory lap to the kitchen, get your favorite
drink and snacks, then come back for the final step! You want to know your score,
don't you?

Presenting an Alert
After using the sliders to get a good color match, your user taps the Hit Me! button,
just like in the original UIKit game. And just like in the original, an Alert should
appear, displaying the score.

First, add a method to ContentView to compute the score. Between the @State
variables and the body, add this method:

func computeScore() -> Int {
 let rDiff = rGuess - rTarget
 let gDiff = gGuess - gTarget
 let bDiff = bGuess - bTarget
 let diff = sqrt(rDiff * rDiff + gDiff * gDiff + bDiff * bDiff)
 return Int((1.0 - diff) * 100.0 + 0.5)
}

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 32

The diff value is just the distance between two points in three-dimensional space.
You subtract it from 1, then scale it to a value out of 100. Smaller diff yields a
higher score.

Next, you'll work on your Button view:

Button(action: {}) {
 Text("Hit Me!")
}

A Button has an action and a label, just like a UIButton. The action you want to
happen is the presentation of an Alert view. But if you just create an Alert in the
Button action, it won't do anything.

Instead, you create the Alert as one of the subviews of ContentView, and add a
@State variable of type Bool. Then you set the value of this variable to true when
you want the Alert to appear—in the Button action, in this case. The value resets to
false when the user dismisses the Alert.

So add this @State variable, initialized to false:

@State var showAlert = false

Then add this line as the Button action:

self.showAlert = true

You need the self because showAlert is inside a closure.

Finally, add an alert modifier to the Button, so your Button view looks like this:

Button(action: { self.showAlert = true }) {
 Text("Hit Me!")
}.alert(isPresented: $showAlert) {
 Alert(title: Text("Your Score"),
 message: Text(String(computeScore())))
}.padding()

You pass the $showAlert binding because its value will change when the user
dismisses the alert.

SwiftUI has simple initializers for Alert views, just like the ones that many
developers have created for themselves, in a UIAlertViewController extension.
This one has a default OK button, so you don't even need to include it as a parameter.

Finally, you add some padding, to make the button stand out better.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 33

Turn off live preview, click Resume to refresh the preview, then turn on live
preview, and try your hand at matching the target color:

Score!

Hey, when you've got live preview, who needs Simulator?

Challenge

Challenge: Create a SwiftUI app
The challenge/starter folder contains a UIKit version of our "famous" BullsEye app
from our book iOS Apprentice. Your challenge is to create a SwiftUI app with the
same UI and behavior.

The UIKit app doesn't use a stack view for the slider, but you'll find it really easy to
create your SwiftUI UI using stacks.

The solution is in the challenge/final folder for this chapter.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 34

Key points
• The Xcode canvas lets you create your UI side-by-side with its code, and they stay

in sync—a change to one side always updates the other side.

• You can create your UI in code or in the canvas or using any combination of the
tools.

• You organize your view objects with horizontal and vertical stacks, just like using
stack views in storyboards.

• Preview lets you see how your app looks and behaves with different environment
settings or initial data, and Live Preview lets you interact with your app without
firing up Simulator.

• You should aim to create reusable views — Xcode's Extract Subview tool makes
this easy.

• SwiftUI updates your UI whenever a @State variable's value changes. You pass a
reference to a subview as a @Binding, allowing read-write access to the @State
variable.

• Presenting alerts is easy again.

SwiftUI by Tutorials Chapter 2: Getting Started

raywenderlich.com 35

WWhere to Go From Here?

We hope you enjoyed this sample of SwiftUI by Tutorials!

If you enjoyed this sample, be sure to check out the full book, which will contain the
following chapters:

Section I: Beginning SwiftUI
Chapter 1: Introduction

Chapter 2: Getting Started: Get started with SwiftUI. Learn about the basic
terminology and discover the power of building your interface directly in the preview
canvas. Check how SwiftUI makes declarative development easy and straightforward
and how you can drag and drop as you used to do with storyboards.

Chapter 3: Understanding SwiftUI: SwiftUI changes the way we must think about
views, data, and control. Get a better understanding of the differences with UIKit.
Learn how ViewControllers are being replaced or powerful concepts like
@ObjectBinding and @EnvironmentObject.

Chapter 4: Integrating SwiftUI: Check how SwiftUI and UIKit/AppKit can be good
friends and work together side by side by integrating them in a single app. Learn how
to navigate between both implementations and how to create and manage SwiftUI
packages and frameworks.

Chapter 5: The Apple Ecosystem: Check the differences between Apple´s platforms
when dealing with SwiftUI. Learn how to focus on getting the best use of the device,
its unique features and its way to handle input. Customize an app and update it for
AppKit, UIKit, WatchKit, tvOS, iPadOS and Catalyst.

raywenderlich.com 36

Chapter 6: Intro to Controls: Text & Image: Learn how to add and configure different
SwiftUI controls within your apps. Discover modifiers in a practical way and how they
can be shared across controls or used individually. Get an introduction to container
views and how to use them with SwiftUI.

Chapter 7: State & Data Flow: Learn how to bind data to the UI, about reactive
updates to the UI through state management, and in-depth usage of the attributes
related to SwiftUI.

Chapter 8: Controls & User Inputs: Learn about some of the main and most used
controls in user interfaces such as TextFields, Buttons, Toggles, Sliders, Steppers and
Pickers and how to use them with SwiftUI.

Chapter 9: Introducing Stacks & Containers: Learn the powerful capabilities of
vertical and horizontal stacks. See how easy it is to apply them to your app layout
and to nest them to generate almost any possible combination. Stacks are back
stronger than before and will for sure become a game-changer in SwiftUI.

Chapter 10: Lists & Navigation: Increase your knowledge with more advanced
SwiftUI controls. Lists are a must in almost any app. Here you will learn how to deal
with any sort of list to get the best out of them. You will learn about navigation and
start working with the most powerful user feedback an app can provide, Alerts,
Modals, and Popovers. Need to provide users with extra functionality? Sheets and
ActionSheets have also been prepared for SwiftUI.

Section II: Intermediate SwiftUI
Chapter 11: Testing & Debugging: We all know how important testing is in modern
application development. See how to apply UI Testing to your SwiftUI apps in this
very simple, yet powerful course.

Chapter 12: Handling User Input: Learn how to trigger updates on the interface,
including how to easily test a SwiftUI interface, how to manage the flow of screens
throughout a complex app, and how to deal with gestures, including the
development of a custom gesture.

Chapter 13: Drawing & Custom Graphics: Learn how to draw with the use of paths,
shapes, and geometry. Follow along to design your own element and bring it to life
by applying some basic animations.

Chapter 14: Animations: Learn the basic concepts for animating views using SwiftUI.
Learn how to apply animations to view transitions, how to animate state changes
and how to combine and chain those animations.

SwiftUI by Tutorials Where to Go From Here?

raywenderlich.com 37

Section III: Advanced SwiftUI
Chapter 15: Complex Interfaces: In this chapter, you will learn how to develop more
complex interfaces. Get out of your comfort zone and dive into more advanced
concepts that will allow you to generate almost any UI you can image. And learn the
limitations you may find while developing advanced SwiftUI interfaces.

We hope you enjoy the book!

• The SwiftUI by Tutorials team

SwiftUI by Tutorials Where to Go From Here?

raywenderlich.com 38

CConclusion

We hope you’re as excited about SwiftUI as we are! This new approach to building
user interfaces might seem a bit strange at the start. But we’re sure that if you’ve
worked through the chapters in this book, you now have a much better
understanding of declarative programming and the infinite possibilities of SwiftUI.
Remember, SwiftUI is still very much a baby, learning her first steps; it still has a lot
to learn and a lot of growing ahead. And you’ve also just made your own first steps in
working with this wonderful new framework.

The possibility of using SwiftUI for all Apple devices opens up the playing field for a
greater number of developers on all Apple platforms, which will hopefully turn into
many more amazing apps adapted for the iPhone, Mac, iPad, Apple Watch, Apple
TV... and even new devices to come!

We encourage you to try to put the book concepts in practice. Combine SwiftUI with
UIKit & AppKit and see how well they get along together. Try Stacks, navigation,
testing, and all the cool concepts explained throughout the book. Keep learning, and
share your projects with us!

If you have any questions or comments as you work through this book, please stop by
our forums at http://forums.raywenderlich.com and look for the particular forum
category for this book.

Thank you again for purchasing this book. Your continued support is what makes the
books, tutorials, videos and other things we do at raywenderlich.com possible. We
truly appreciate it!

– The SwiftUI by Tutorials team

raywenderlich.com 39

struct ThankYouView: View {
 var body: some View {
 Text("Thank you very much")
 }
}

SwiftUI by Tutorials Conclusion

raywenderlich.com 40

	Book License
	About This Book Sample
	Book Source Code & Forums
	What You Need
	Chapter 2: Getting Started
	Getting started
	Creating your UI
	Updating the UI
	Making Reusable Views
	Presenting an Alert
	Challenge
	Key points

	Where to Go From Here?
	Conclusion

